1
|
Ye L, Yu X, Yan D, Ma S. Resting-State Brain Amplitude of Low-Frequency Fluctuations: A Comparative Study Across Different Frequency Bands in Student Pilots. J Neurosci Res 2025; 103:e70047. [PMID: 40400335 DOI: 10.1002/jnr.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 04/19/2025] [Accepted: 05/10/2025] [Indexed: 05/23/2025]
Abstract
In this study, we aimed to investigate changes in the mean amplitude of low-frequency fluctuations (mALFF) in different frequency bands in flight trainees using resting-state functional magnetic resonance imaging (rs-fMRI) technology to explore the impact of flight training on brain functional changes. The study included 39 flight trainees and 37 well-matched healthy controls. MATLAB software was used to perform two-sample t-tests on the mALFF values of the subjects in different frequency bands to identify intergroup differences. SPSS software was used to perform correlation analysis between the different brain areas and the results of the Berg Card Sorting Test (BCST). The results revealed significant differences in mALFF values in multiple brain areas, including the left medial superior frontal gyrus and the left postcentral gyrus, between the two groups. Sub-bands revealed more differential brain areas compared to the classical band, and these differential brain areas were significantly correlated with the total accuracy of the BCST. Under resting conditions, flight trainees who underwent flight training showed significant differences from the control group in brain regions related to cognitive executive control, somatosensory function, memory function, and other functions. This may be related to the learning of critical flight skills, such as emergency operations, maneuvering the aircraft for takeoff, landing, and re-flight during executive flight training. Meanwhile, the sub-band is more sensitive to information about brain functional activities than the classical band, which provides a new perspective for further exploring the changes in pilot brain functional mechanisms in the future.
Collapse
Affiliation(s)
- Lu Ye
- Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Xinli Yu
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Dongfeng Yan
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Shan Ma
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| |
Collapse
|
2
|
Ye L, Ba L, Yan D. A study of dynamic functional connectivity changes in flight trainees based on a triple network model. Sci Rep 2025; 15:7828. [PMID: 40050304 PMCID: PMC11885617 DOI: 10.1038/s41598-025-89023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
The time-varying functional connectivity of the Central Executive Network (CEN), Default Mode Network (DMN), and Salience Network (SN) in flight trainees during a resting state was investigated using dynamic functional network connectivity (dFNC). The study included 39 flight trainees and 37 age- and sex-matched healthy controls. Resting-state fMRI data and behavioral test outcomes were obtained from both groups. Independent component analysis (ICA), sliding window, and K-means clustering approaches were utilized for evaluating functional network connectivity (FNC) and temporal metrics based on the triple networks. Correlation analyses were performed on the behavioral assessments and these metrics. The flight trainees demonstrated a significantly enhanced functional connection linking the CEN and DMN in state 2 (P < 0.05, FDR corrected). Additionally, flight trainees spent less time in state 5, while they exhibited a protracted mean dwell time and fractional windows in state 2, which were significantly correlated with accuracy on the Berg Card Sorting Test (BCST) and Change Detection Test (all P < 0.05). The improved connectivity of flight trainees between the CEN and DMN following the completion of rigorous flight training resulted in increased stability. This enhancement may be relevant to cognitive abilities such as decision-making, memory, and information integration. When multitasking, flight trainees displayed superior visual processing skills and enhanced cognitive flexibility. dFNC research provides a unique perspective on the sophisticated cognitive capabilities that are required in high-demand, high-stress occupations such as piloting, thereby providing significant insights into the intricate brain mechanisms that are inherent in these domains.
Collapse
Affiliation(s)
- Lu Ye
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China
| | - Liya Ba
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China
| | - Dongfeng Yan
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China.
| |
Collapse
|
3
|
Chen X, Zhang S, Dong S, Meng Q, Xu P, Chu Q, Huang D, Luo C. Investigating visual perception abilities in flight cadets: the crucial role of the lingual gyrus and precuneus. Front Neurosci 2025; 19:1519870. [PMID: 40078710 PMCID: PMC11897578 DOI: 10.3389/fnins.2025.1519870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction In aviation, exceptional visual perception is crucial for pilots to monitor flight instruments and respond swiftly to deviations, as well as make rapid judgments regarding environmental changes, ensuring aviation safety. However, existing research on pilots' visual perception has predominantly focused on behavioral observations, with limited exploration of the neurophysiological mechanisms involved. Methods This study aimed to investigate the brain activity associated with the visual perception capabilities of flight cadets. Data were collected from 25 flying cadets and 24 ground students under two conditions: a resting-state functional magnetic resonance imaging session conducted in 2022 and a change-detection task. The data were analyzed using RESTplus software. Results The analysis revealed that degree centrality values in the right precuneus and left lingual gyrus showed significantly positive correlations with task reaction time and accuracy, respectively, in the pilot group. These brain regions were found to be significantly associated with the visual perception abilities of the pilots. Discussion The findings suggest that alterations in the left precuneus and right lingual gyrus in pilots are linked to their visual perception capabilities, which may play a crucial role in mission performance. These results provide a foundation for improving flight training programs and selecting suitable flight trainees based on neurophysiological markers of visual perception.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Shicong Zhang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Shipeng Dong
- Aviation Health Department, Southwest Regional Administration of Civil Aviation Administration of China, Chengdu, China
| | - Qingbin Meng
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Peiran Xu
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Qi Chu
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Donglin Huang
- Hospital of Civil Aviation Flight University of China, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Wang L, Yang C, Yan D, Ye L, Chen X, Ma S. The effects of flight training on flying cadets' brain structure. PLoS One 2025; 20:e0313148. [PMID: 39928587 PMCID: PMC11809809 DOI: 10.1371/journal.pone.0313148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/19/2024] [Indexed: 02/12/2025] Open
Abstract
In recent years, the impact of professional training on brain structure has sparked extensive research interest. Research into pilots as a high-demand, high-load, and high-cost occupation holds significant academic and economic value. The aim of this study is to investigate the effects of flight training on the brain structure and cognitive functions of flying cadets. The structural magnetic resonance imaging (sMRI) data from 39 flying cadets and 37 general college students underwent analysis using voxel-based morphometry (VBM) and surface-based morphometry (SBM) methods to quantitatively detect and compute multiple indicators, including gray matter volume (GMV), curvature, mean curvature of the white matter surface (MC-WMS), the percentage of surface white matter gray matter (WM-GM percentage), surface Jacobi (S-Jacobi), and Gaussian curvature of white matter surface (GC-WMS). At the voxel level, the GMV in the left temporal pole: middle temporal gyrus region of flying cadets significantly decreased (Gaussian random field, GRF, P < 0.05). At the surface level, there was a significant increase in curvature, MC-WMS, and S-Jacobi in the lateral occipital region of flight cadets (Monte Carlo block level correction, MCBLC, P<0.05), a significant increase in WM-GM percentage in the cuneus region of flight cadets (MCBLC, P<0.05), and a significant increase in GC-WMS in the middle temporal region of flight cadets (MCBLC, P<0.05). In addition, these changes were correlated with behavioral tests. Research suggested that flight training might induce changes in certain brain regions of flying cadets, enabling them to adapt to evolving training content and environments, thereby enhancing their problem-solving and flight abilities. By analyzing multiple indicators at the voxel and surface levels in an integrated manner, it advances our understanding of brain structure, function, and plasticity, while also facilitating a more profound exploration of the neural mechanisms within the pilot's brain.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Chengshi Yang
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Dongfeng Yan
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Lu Ye
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Xi Chen
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| | - Shan Ma
- Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, Sichuan, China
| |
Collapse
|
5
|
Chen X, Wang H, Tan X, Duan M, Luo C. Flight training and the anterior cingulate cortex. Sci Rep 2024; 14:29908. [PMID: 39622970 PMCID: PMC11612386 DOI: 10.1038/s41598-024-81892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
Pilots are considered the final line of defense for aviation safety. Before becoming a pilot, an ab initio pilot must undergo systematic flight training. This study included 25 male flying cadets. Kendall's coefficient of concordance was used to measure the regional homogeneity of the time series of a given voxel with its 26 nearest neighboring voxels. This operation was performed for all voxels to generate a regional homogeneity map for each participant based on Kendall's coefficient of concordance. A partial correlation analysis was performed to examine the relationship between regional homogeneity maps and flight training hours. We found that the anterior cingulate cortex in the ab initio group was significantly positively correlated with flight hours. These results suggest a potential relationship between flight training experience and the functional properties of the anterior cingulate cortex.
Collapse
Affiliation(s)
- Xi Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Institute of Flight Technology, Civil Aviation Flight university of China, Guanghan, China.
| | - Hongming Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Tan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
6
|
Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased Functional Connectivity Between the Parietal and Occipital Modules Among Flight Cadets. Aerosp Med Hum Perform 2024; 95:375-380. [PMID: 38915163 DOI: 10.3357/amhp.6370.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION: Modular organization in brain regions often performs specific biological functions and is largely based on anatomically and/or functionally related brain areas. The current study aimed to explore changes in whole-brain modular organization affected by flight training.METHODS: The study included 25 male flight cadets and 24 male controls. The first assessment was performed in 2019, when the subjects were university freshmen. The second assessment was completed in 2022. High spatial resolution structural imaging (T1) and resting-state functional MRI data were collected. Then, 90 cerebral regions were organized into 6 brain modules. The intensity of intra- and intermodular communication was calculated.RESULTS: Mixed-effect regression model analysis identified significantly increased interconnections between the parietal and occipital modules in the cadet group, but significantly decreased interconnections in the control group. This change was largely attributed to flight training.DISCUSSION: Pilots need to control the aircraft (e.g., attitude, heading, etc.) using the stick and pedal in response to the current state of the aircraft displayed by the instrument panel; as such, flying requires a large amount of hand-eye coordination. Day-to-day flight training appeared to intensify the connection between the parietal and occipital modules among cadets.Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased functional connectivity between the parietal and occipital modules among flight cadets. Aerosp Med Hum Perform. 2024; 95(7):375-380.
Collapse
|
7
|
Chen X, Chu Q, Meng Q, Xu P, Zhang S. Alterations in white matter fiber tracts and their correlation with flying cadet behavior. Cereb Cortex 2024; 34:bhad548. [PMID: 38236724 DOI: 10.1093/cercor/bhad548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
An increasing number of studies have shown that flight training alters the human brain structure; however, most studies have focused on gray matter, and the exploration of white matter structure has been largely neglected. This study aimed to investigate the changes in white matter structure induced by flight training and estimate the correlation between such changes and psychomotor and flight performance. Diffusion tensor imaging data were obtained from 25 flying cadets and 24 general college students. Data were collected in 2019 and 2022 and analyzed using automated fiber quantification. This study found no significant changes in the flight group in 2019. However, in 2022, the flight group exhibited significant alterations in the diffusion tensor imaging of the right anterior thalamic radiation, left cingulum cingulate, bilateral superior longitudinal fasciculus, and left arcuate fasciculus. These changes occurred within local nodes of the fiber tracts. In addition, we found that changes in fiber tracts in the 2022 flight group were correlated with the reaction time of the psychomotor test task and flight duration. These findings may help improve flight training programs and provide new ideas for the selection of excellent pilots.
Collapse
Affiliation(s)
- Xi Chen
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Qi Chu
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Qingbin Meng
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Peiran Xu
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| | - Shicong Zhang
- Flight Technology College, Civil Aviation Flight University of China, 46 Nanchang road, Guanghan 618307, China
| |
Collapse
|