1
|
Xu K, Long D, Zhang M, Wang Y. The efficacy of topological properties of functional brain networks in identifying major depressive disorder. Sci Rep 2024; 14:29453. [PMID: 39604455 PMCID: PMC11603045 DOI: 10.1038/s41598-024-80294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Major Depressive Disorder (MDD) is a common mental disorder characterized by cognitive impairment, and its pathophysiology remains to be explored. In this study, we aimed to explore the efficacy of brain network topological properties (TPs) in identifying MDD patients, revealing variational brain regions with efficient TPs. Functional connectivity (FC) networks were constructed from resting-state functional magnetic resonance imaging (rs-fMRI). Small-worldness did not exhibit significant variations in MDD patients. Subsequently, two-sample t-tests were employed to screen FC and reconstruct the network. The discriminative ability of TPs between MDD patients and healthy controls was analyzed using receiver operating characteristic (ROC), ROC analysis showed the small-worldness of binary reconstructed FC network (p < 0.05) was reduced in MDD patients, with area under the curve (AUC) of local efficiency (Le) and clustering coefficient (Cp) as sample features having AUC of 0.6351 and 0.6347 respectively being optimal. The AUC of Le and Cp for retained brain regions by T-test (p < 0.05) were 0.6795 and 0.6956 respectively. Further, support vector machine (SVM) model assessed the effectiveness of TPs in identifying MDD patients, and it identified the Le and Cp in brain regions selected by the least absolute shrinkage and selection operator (LASSO), with average accuracy from leave-one-site-out cross-validation being 62.03% and 61.44%. Additionally, shapley additive explanations (SHAP) was employed to elucidate variations in TPs across brain regions, revealing that predominant variations among MDD patients occurred within the default mode network. These results reveal efficient TPs that can provide empirical evidence for utilizing nodal TPs as effective inputs for deep learning on graph structures, contributing to understanding the pathological mechanisms of MDD.
Collapse
Affiliation(s)
- Kejie Xu
- School of Electronic Information, HuZhou college, HuZhou, China
- Huzhou Key Laboratory of Urban Multidimensional Perception and Intelligent Computing, Huzhou College, HuZhou, China
| | - Dan Long
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengda Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Yifan Wang
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Liu J, Yang W, Ma Y, Dong Q, Li Y, Hu B. Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification. Comput Biol Med 2024; 171:108069. [PMID: 38394798 DOI: 10.1016/j.compbiomed.2024.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
Functional connectivity (FC) derived from resting-state fMRI (rs-fMRI) is a primary approach for identifying brain diseases, but it is limited to capturing the pairwise correlation between regions-of-interest (ROIs) in the brain. Thus, hyper-connectivity which describes the higher-order relationship among multiple ROIs is receiving increasing attention. However, most hyper-connectivity methods overlook the directionality of connections. The direction of information flow constitutes a pivotal factor in shaping brain activity and cognitive processes. Neglecting this directional aspect can lead to an incomplete understanding of high-order interactions within the brain. To this end, we propose a novel effective hyper-connectivity (EHC) network that integrates direction detection and hyper-connectivity modeling. It characterizes the high-order directional information flow among multiple ROIs, providing a more comprehensive understanding of brain activity. Then, we develop a directed hypergraph convolutional network (DHGCN) to acquire deep representations from EHC network and functional indicators of ROIs. In contrast to conventional hypergraph convolutional networks designed for undirected hypergraphs, DHGCN is specifically tailored to handle directed hypergraph data structures. Moreover, unlike existing methods that primarily focus on fMRI time series, our proposed DHGCN model also incorporates multiple functional indicators, providing a robust framework for feature learning. Finally, deep representations generated via DHGCN, combined with demographic factors, are used for major depressive disorder (MDD) identification. Experimental results demonstrate that the proposed framework outperforms both FC and undirected hyper-connectivity models, as well as surpassing other state-of-the-art methods. The identification of EHC abnormalities through our framework can enhance the analysis of brain function in individuals with MDD.
Collapse
Affiliation(s)
- Jingyu Liu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxin Yang
- School of Information Science and Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Yulan Ma
- School of Automation Science and Electrical Engineering, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China
| | - Qunxi Dong
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yang Li
- School of Automation Science and Electrical Engineering, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China.
| | - Bin Hu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Lee DA, Lee HJ, Park KM. Involvement of the default mode network in patients with transient global amnesia: multilayer network. Neuroradiology 2023; 65:1729-1736. [PMID: 37848740 DOI: 10.1007/s00234-023-03241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION We aimed to investigate the alterations in the multilayer network in patients with transient global amnesia (TGA). METHODS We enrolled 124 patients with TGA and 80 healthy controls. Both patients with TGA and healthy controls underwent a three-teslar brain magnetic resonance imaging (MRI). A gray matter layer matrix was created using a morphometric similarity network derived from the T1-weighted imaging, and a white matter layer matrix was constructed using structural connectivity based on the diffusion tensor imaging. A multilayer network analysis was performed by applying graph theoretical analysis. RESULTS There were no significant differences in global network measures between the groups. However, several regions, related to the default mode network, showed significant differences in nodal network measures between the groups. Multi-richness in the left pars opercularis, multi-rich-club degree in the right posterior cingulate gyrus, and weighted multiplex participation in the right posterior cingulate gyrus were higher in patients with TGA compared with healthy controls (15.47 vs. 12.26, p = 0.0005; 41.68 vs. 37.16, p = 0.0005; 0.90 vs. 0.80, p = 0.0005; respectively). The multiplex core-periphery in the left precuneus was higher (0.96 vs. 0.84, p = 0.0005), whereas that in the transverse temporal gyrus was lower in patients with TGA compared with healthy controls (0.00 vs. 0.02, p = 0.0005). CONCLUSION We newly find the alterations in the multilayer network in patients with TGA compared with healthy controls, which shows the involvement of the default mode network. These changes may be related to the pathophysiology of TGA.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-Ro 875, Haeundae-Gu, Busan, 48108, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-Ro 875, Haeundae-Gu, Busan, 48108, Republic of Korea.
| |
Collapse
|
5
|
Zhang M, Long D, Chen Z, Fang C, Li Y, Huang P, Chen F, Sun H. Multi-view graph network learning framework for identification of major depressive disorder. Comput Biol Med 2023; 166:107478. [PMID: 37776730 DOI: 10.1016/j.compbiomed.2023.107478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) exhibits non-Euclidean topological structures, which have pathological foundations and serve as ideal objective data for intelligent diagnosis of major depressive disorder (MDD) patients. Additionally, the fully connected FC demonstrates uniform spatial structures. To learn and integrate information from these two structural forms for a more comprehensive identification of MDD patients, we propose a novel hierarchical learning structure called Multi-View Graph Neural Network (MV-GNN). In MV-GNN, the collaborative FC of subjects is filtered and reconstructed from topological view to obtain the reconstructed FC, incorporating various threshold values to calculate the topological attributes of brain regions. ROC analysis is performed on the average scores of these attributes for MDD and healthy control (HC) groups to determine an efficient threshold. Group differences analysis is conducted on the efficient topological attributes of brain regions, followed by their selection. These efficient attributes, along with the reconstructed FC, are combined to construct a graph view using self-attention graph pooling and graph convolutional neural networks, enabling efficient embedding. To extract efficient FC pattern difference information from spatial view, a dual leave-one-out cross-feature selection method is proposed. It selects and extracts relevant information from uniformly sized FC structures' high-dimensional spatial features, constructing a relationship view between brain regions. This approach incorporates both the whole graph topological view and spatial relationship view in a multi-layered structure, fusing them using gating mechanisms. By incorporating multiple views, it enhances the inference of whether subjects suffer from MDD and reveals differential information between MDD and HC groups across different perspectives. The proposed model structure is evaluated through leave-one-site cross-validation and achieves an average accuracy of 65.61% in identifying MDD patients at a single-center site, surpassing state-of-the-art methods in MDD recognition. The model provides valuable discriminatory information for objective diagnosis of MDD and serves as a reference for pathological foundations.
Collapse
Affiliation(s)
- Mengda Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Dan Long
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhaoqing Chen
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Chunhao Fang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - You Li
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Pinpin Huang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Fengnong Chen
- School of Automation, Hangzhou Dianzi University, Hangzhou, China.
| | - Hongwei Sun
- School of Automation, Hangzhou Dianzi University, Hangzhou, China.
| |
Collapse
|