1
|
Yuan Y, Fu Y, Wang X, Hu F, Zhao Q, He C, Tang L, Li Y, Bu Y, Song X, Liu Q, Liu Z, Xu R, Cao W, Zhang Y, Yi X, Wang J, Chen BT. Shape Alterations of Subcortical Nuclei Correlate With Amyotrophic Lateral Sclerosis Progression. Brain Behav 2025; 15:e70495. [PMID: 40384352 PMCID: PMC12086364 DOI: 10.1002/brb3.70495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/21/2025] [Accepted: 03/31/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Neuroimaging has been increasingly used to assess brain structural alterations in patients with amyotrophic lateral sclerosis (ALS). We aimed to investigate alterations in brain sub-cortical structures and to identify potential neuroimaging biomarkers for disease progression for patients with ALS. METHODS A total of 61 patients with ALS were prospectively enrolled and were divided into three subgroups according to disease progression, i.e., fast, intermediate, and slow progression. Sixty-one matched healthy controls (HCs) were also recruited. All participants acquired a brain structural magnetic resonance imaging scan for subcortical volumetric and shape analyses. Neuropsychological testing and functional assessment were performed. RESULTS Patients with fast progression showed significant shape alterations in basal ganglia and brainstem as compared to the HCs group. In ALS patients with fast progression, shape contractions with atrophic changes were noted in bilateral nucleus accumbens, left caudate, left thalamus, and brainstem; while shape expansion with hypertrophy was noted in the left caudate, left thalamus, and left pallidum (all p < 0.05). There were significant positive correlations of the shape changes of the left thalamus with the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALS-FRS-R) total and limb scores and with disease duration (all p < 0.05). There were positive correlations of left pallidum with anxiety or with disease duration, and of left nucleus accumbens with ALS-FRS-R total or bulbar score, and of brainstem with mini-mental state examination score (all p < 0.05). CONCLUSION Extensive shape alterations of subcortical nuclei were noted in patients with fast progression of ALS, implicating subcortical shape being a potential neuroimaging biomarker for ALS progression.
Collapse
Affiliation(s)
- Yanchun Yuan
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Yan Fu
- Department of RadiologyXiangya Hospital, Central South UniversityChangshaHunanP.R. China
| | - Xueying Wang
- Department of RadiologyXiangya Hospital, Central South UniversityChangshaHunanP.R. China
| | - Fan Hu
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
- Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical CollegeFirst Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiP.R. China
| | - Qianqian Zhao
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Cailin He
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Linxin Tang
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Yongchao Li
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Yue Bu
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Xinyu Song
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Qing Liu
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Ziqin Liu
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
| | - Renshi Xu
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
- Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical CollegeFirst Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiP.R. China
| | - Wenfeng Cao
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
- Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical CollegeFirst Affiliated Hospital of Nanchang Medical CollegeNanchangJiangxiP.R. China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduSichuanP.R. China
| | - Xiaoping Yi
- Department of RadiologyXiangya Hospital, Central South UniversityChangshaHunanP.R. China
| | - Junling Wang
- Xiangya HospitalCentral South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangJiangxiP. R. China.
- National Clinical Research Center for Geriatric DiseasesXiangya Hospital, Central South UniversityChangshaHunanP. R. China
- Key Laboratory of Hunan Province for Neurodegenerative DisordersCentral South UniversityChangshaHunanP. R. China
- Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaHunanP. R. China
- Engineering Research Center of Hunan Province for Cognitive Impairment DisordersCentral South UniversityChangshaHunanP. R. China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesChangshaHunanP. R. China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative DiseasesChangshaHunanP. R. China
| | - Bihong T. Chen
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
2
|
Ghaderi S, Fatehi F, Kalra S, Mohammadi S, Batouli SAH. Quantitative susceptibility mapping in amyotrophic lateral sclerosis: automatic quantification of the magnetic susceptibility in the subcortical nuclei. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:73-84. [PMID: 38957123 DOI: 10.1080/21678421.2024.2372648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Previous studies have suggested a link between dysregulation of cortical iron levels and neuronal loss in amyotrophic lateral sclerosis (ALS) patients. However, few studies have reported differences in quantitative susceptibility mapping (QSM) values in subcortical nuclei between patients with ALS and healthy controls (HCs). METHODS MRI was performed using a 3 Tesla Prisma scanner (64-channel head coil), including 3D T1-MPRAGE and multi-echo 3D GRE for QSM reconstruction. Automated QSM segmentation was used to measure susceptibility values in the subcortical nuclei, which were compared between the groups. Correlations with clinical scales were analyzed. Group comparisons were performed using independent t-tests, with p < 0.05 considered significant. Correlations were assessed using Pearson's correlation, with p < 0.05 considered significant. Cohen's d was reported to compare the standardized mean difference (SMD) of QSM. RESULTS Twelve patients with limb-onset ALS (mean age 48.7 years, 75% male) and 13 age-, sex-, and handedness-matched HCs (mean age 44.6 years, 69% male) were included. Compared to HCs, ALS patients demonstrated significantly lower susceptibility in the left caudate nucleus (CN) (SMD = -0.845), right CN (SMD = -0.851), whole CN (SMD = -1.016), and left subthalamic nucleus (STN) (SMD = -1.000). Susceptibility in the left putamen (SMD = -0.857), left thalamus (SMD = -1.081), and whole thalamus (SMD = -0.968) was significantly higher in the patients. The susceptibility of the substantia nigra (SN), CN, and pulvinar was positively correlated with disease duration. CONCLUSIONS QSM detects abnormal iron accumulation patterns in the subcortical gray matter of ALS patients, which correlates with disease characteristics, supporting its potential as a neuroimaging biomarker.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada, and
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Sana Mohammadi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jellinger KA. The spectrum of behavioral disorders in amyotrophic lateral sclerosis: current view. J Neural Transm (Vienna) 2025; 132:217-236. [PMID: 39402174 DOI: 10.1007/s00702-024-02841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 02/02/2025]
Abstract
Behavioral disorders, with an average prevalence of 30-60% are important non-motor symptoms in amyotrophic lateral sclerosis (ALS) that have a negative impact on prognosis, management and quality of life, yet the underlying neurobiology is poorly understood. Among people with ALS, apathy, fatigue, anxiety, irritability and other behavioral symptoms are the most prominent, although less frequent than cognitive impairment. The present review explores the current understanding of behavioral changes in ALS with particular emphasis on our current knowledge about their structural and functional brain correlates, substantiating a multisystem degeneration with particular dysfunction of frontal-subcortical circuits and dysfunction of fronto-striatal, frontotemporal and other essential brain systems. The natural history of behavioral dysfunctions in ALS and their relationship to frontotemporal lobe degeneration (FTLD) are not fully understood, although they form a clinical continuum, suggesting a differential vulnerability of non-motor brain networks, ALS being considered a brain network disorder. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of behavioral impairment in ALS. Treatment of both ALS and co-morbid behavioral disorders is a multidisciplinary task, but whereas no causal or disease-modifying therapies for ALS are available, symptomatic treatment of a variety of behavioral symptoms plays a pivotal role in patient care, although the management of behavioral symptoms in clinical care still remains limited.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
4
|
Bjelica B, Bartels MB, Hesebeck-Brinckmann J, Petri S. Non-motor symptoms in patients with amyotrophic lateral sclerosis: current state and future directions. J Neurol 2024; 271:3953-3977. [PMID: 38805053 PMCID: PMC11233299 DOI: 10.1007/s00415-024-12455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of both upper and lower motor neurons. A defining histopathological feature in approximately 97% of all ALS cases is the accumulation of phosphorylated trans-activation response (TAR) DNA-binding protein 43 protein (pTDP-43) aggregates in the cytoplasm of neurons and glial cells within the central nervous system. Traditionally, it was believed that the accumulation of TDP-43 aggregates and subsequent neurodegeneration primarily occurs in motor neurons. However, contemporary evidence suggests that as the disease progresses, other systems and brain regions are also affected. Despite this, there has been a limited number of clinical studies assessing the non-motor symptoms in ALS patients. These studies often employ various outcome measures, resulting in a wide range of reported frequencies of non-motor symptoms in ALS patients. The importance of assessing the non-motor symptoms reflects in a fact that they have a significant impact on patients' quality of life, yet they frequently go underdiagnosed and unreported during clinical evaluations. This review aims to provide an up-to-date overview of the current knowledge concerning non-motor symptoms in ALS. Furthermore, we address their diagnosis and treatment in everyday clinical practice.
Collapse
Affiliation(s)
- Bogdan Bjelica
- Department of Neurology, Hannover Medical School, 1, Carl-Neuberg-Strasse, 30625, Hannover, Germany.
| | - Maj-Britt Bartels
- Precision Neurology of Neuromuscular and Motoneuron Diseases, University of Luebeck, Lübeck, Germany
| | - Jasper Hesebeck-Brinckmann
- Neurology Department, Division for Neurodegenerative Diseases, University Medicine Mannheim, Heidelberg University, Mannheim Center for Translational Medicine, Mannheim, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 1, Carl-Neuberg-Strasse, 30625, Hannover, Germany
| |
Collapse
|
5
|
Cao Y, Wu Y, Dong Q, Huang N, Zou Z, Chen H. Neurite orientation dispersion and density imaging quantifies microstructural impairment in the thalamus and its connectivity in amyotrophic lateral sclerosis. CNS Neurosci Ther 2024; 30:e14616. [PMID: 38334027 PMCID: PMC10853891 DOI: 10.1111/cns.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS To evaluate microstructural impairment in the thalamus and thalamocortical connectivity using neurite orientation dispersion and density imaging (NODDI) in amyotrophic lateral sclerosis (ALS). METHODS This study included 47 healthy controls and 43 ALS patients, whose structural and diffusion-weighted data were collected. We used state-of-the-art parallel transport tractography to identify thalamocortical pathways in individual spaces. Thalamus was then parcellated into six subregions based on its connectivity pattern with the priori defined cortical (i.e., prefrontal/motor/somatosensory/temporal/posterior-parietal/occipital) regions. For each of the thalamic and cortical subregions and thalamo-cortical tracts, we compared the following NODDI metrics between groups: orientation dispersion index (ODI), neurite density index (NDI), and isotropic volume fraction (ISO). We also used these metrics to conduct receiver operating characteristic curve (ROC) analyses and Spearman correlation. RESULTS In ALS patients, we found decreased ODI and increased ISO in the thalamic subregion connecting the left motor cortex and other extramotor (e.g., somatosensory and occipital) cortex (Bonferroni-corrected p < 0.05). NDI decreased in the bilateral thalamo-motor and thalamo-somatosensory tracts and in the right thalamo-posterior-parietal and thalamo-occipital tracts (Bonferroni-corrected p < 0.05). NDI reduction in the bilateral thalamo-motor tract (p = 0.017 and 0.009) and left thalamo-somatosensory tract (p = 0.029) was correlated with disease severity. In thalamo-cortical tracts, NDI yielded a higher effect size during between-group comparisons and a greater area under ROC (p < 0.05) compared with conventional diffusion tensor imaging metrics. CONCLUSIONS Microstructural impairment in the thalamus and thalamocortical connectivity is the hallmark of ALS. NODDI improved the detection of disrupted thalamo-cortical connectivity in ALS.
Collapse
Affiliation(s)
- Yun‐Bin Cao
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Ye Wu
- School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Qiu‐Yi Dong
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Nao‐Xin Huang
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Zhang‐Yu Zou
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
| | - Hua‐Jun Chen
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
6
|
Peggion C, Massimino ML, Pereira D, Granuzzo S, Righetto F, Bortolotto R, Agostini J, Sartori G, Bertoli A, Lopreiato R. Structural Integrity of Nucleolin Is Required to Suppress TDP-43-Mediated Cytotoxicity in Yeast and Human Cell Models. Int J Mol Sci 2023; 24:17466. [PMID: 38139294 PMCID: PMC10744044 DOI: 10.3390/ijms242417466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Transactivating response (TAR) element DNA-binding of 43 kDa (TDP-43) is mainly implicated in the regulation of gene expression, playing multiple roles in RNA metabolism. Pathologically, it is implicated in amyotrophic lateral sclerosis and in a class of neurodegenerative diseases broadly going under the name of frontotemporal lobar degeneration (FTLD). A common hallmark of most forms of such diseases is the presence of TDP-43 insoluble inclusions in the cell cytosol. The molecular mechanisms of TDP-43-related cell toxicity are still unclear, and the contribution to cell damage from either loss of normal TDP-43 function or acquired toxic properties of protein aggregates is yet to be established. Here, we investigate the effects on cell viability of FTLD-related TDP-43 mutations in both yeast and mammalian cell models. Moreover, we focus on nucleolin (NCL) gene, recently identified as a genetic suppressor of TDP-43 toxicity, through a thorough structure/function characterization aimed at understanding the role of NCL domains in rescuing TDP-43-induced cytotoxicity. Using functional and biochemical assays, our data demonstrate that the N-terminus of NCL is necessary, but not sufficient, to exert its antagonizing effects on TDP-43, and further support the relevance of the DNA/RNA binding central region of the protein. Concurrently, data suggest the importance of the NCL nuclear localization for TDP-43 trafficking, possibly related to both TDP-43 physiology and toxicity.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy
| | | | - Daniel Pereira
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Sara Granuzzo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Francesca Righetto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Raissa Bortolotto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Jessica Agostini
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Alessandro Bertoli
- Neuroscience Institute, Consiglio Nazionale Delle Ricerche, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
7
|
Eisen A, Vucic S, Mitsumoto H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:1-12. [PMID: 38213309 PMCID: PMC10776891 DOI: 10.1016/j.cnp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease. Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic excitotoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neuron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and genetic findings have supported the dying forward hypothesis theory, although the science is yet to be settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Steve Vucic
- Director Brain and Nerve Research Center, Clinical School, University of Sydney, Australia
| | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology, Columbia University, The Neurological Institute of New York, and New York-Presbyterian Hospital/Columbia University Medical Center, United States
| |
Collapse
|
8
|
Ghaderi S, Batouli SAH, Mohammadi S, Fatehi F. Iron quantification in basal ganglia using quantitative susceptibility mapping in a patient with ALS: a case report and literature review. Front Neurosci 2023; 17:1229082. [PMID: 37877011 PMCID: PMC10593460 DOI: 10.3389/fnins.2023.1229082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can measure the magnetic susceptibility of tissues, which can reflect their iron content. QSM has been used to detect iron accumulation in cortical and subcortical brain regions. However, its application in subcortical regions such as the basal ganglia, particularly the putamen, is rare in patients with amyotrophic lateral sclerosis (ALS). CASE PRESENTATION AND LITERATURE REVIEW We present the case of a 40-year-old male patient with ALS who underwent an MRI for QSM. We compared his QSM images with those of a control subject and performed a quantitative analysis of the magnetic susceptibility values in the putamen regions. We also reviewed the literature on previous QSM studies in ALS and summarized their methods and findings. Our QSM analysis revealed increased magnetic susceptibility values in the bilateral putamen of the ALS patient compared to controls, indicating iron overload. This finding is consistent with previous studies reporting iron dysregulation in subcortical nuclei in ALS. We also discussed the QSM processing techniques used in our study and in the literature, highlighting their advantages and limitations. CONCLUSION This case report demonstrates the potential of QSM as a sensitive MRI biomarker for evaluating iron levels in subcortical regions of ALS patients. QSM can provide quantitative information on iron deposition patterns in both motor and extra-motor areas of ALS patients, which may help understand the pathophysiology of ALS and monitor disease progression. Further studies with larger samples are needed to validate these results and explore the clinical implications of QSM in ALS.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Jellinger KA. The Spectrum of Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: An Update. Int J Mol Sci 2023; 24:14647. [PMID: 37834094 PMCID: PMC10572320 DOI: 10.3390/ijms241914647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cognitive dysfunction is an important non-motor symptom in amyotrophic lateral sclerosis (ALS) that has a negative impact on survival and caregiver burden. It shows a wide spectrum ranging from subjective cognitive decline to frontotemporal dementia (FTD) and covers various cognitive domains, mainly executive/attention, language and verbal memory deficits. The frequency of cognitive impairment across the different ALS phenotypes ranges from 30% to 75%, with up to 45% fulfilling the criteria of FTD. Significant genetic, clinical, and pathological heterogeneity reflects deficits in various cognitive domains. Modern neuroimaging studies revealed frontotemporal degeneration and widespread involvement of limbic and white matter systems, with hypometabolism of the relevant areas. Morphological substrates are frontotemporal and hippocampal atrophy with synaptic loss, associated with TDP-43 and other co-pathologies, including tau deposition. Widespread functional disruptions of motor and extramotor networks, as well as of frontoparietal, frontostriatal and other connectivities, are markers for cognitive deficits in ALS. Cognitive reserve may moderate the effect of brain damage but is not protective against cognitive decline. The natural history of cognitive dysfunction in ALS and its relationship to FTD are not fully understood, although there is an overlap between the ALS variants and ALS-related frontotemporal syndromes, suggesting a differential vulnerability of motor and non-motor networks. An assessment of risks or the early detection of brain connectivity signatures before structural changes may be helpful in investigating the pathophysiological mechanisms of cognitive impairment in ALS, which might even serve as novel targets for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|