1
|
Browne CJ, Sheeba SR, Astill T, Baily A, Deblieck C, Mucci V, Cavaleri R. Assessing the synergistic effectiveness of intermittent theta burst stimulation and the vestibular ocular reflex rehabilitation protocol in the treatment of Mal de Debarquement Syndrome: a randomised controlled trial. J Neurol 2024; 271:2615-2630. [PMID: 38345630 PMCID: PMC11055743 DOI: 10.1007/s00415-024-12215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Mal de Debarquement Syndrome (MdDS) is a rare central vestibular disorder characterised by a constant sensation of motion (rocking, swaying, bobbing), which typically arises after motion experiences (e.g. sea, air, and road travel), though can be triggered by non-motion events. The current standard of care is non-specific medications and interventions that only result in mild-to-moderate improvements. The vestibular ocular reflex (VOR) rehabilitation protocol, a specialised form of rehabilitation, has shown promising results in reducing symptoms amongst people with MdDS. Accumulating evidence suggests that it may be possible to augment the effects of VOR rehabilitation via non-invasive brain stimulation protocols, such as theta burst stimulation (TBS). METHODS The aim of this randomised controlled trial was to evaluate the effectiveness of intermittent TBS (iTBS) over the dorsolateral prefrontal cortex in enhancing the effectiveness of a subsequently delivered VOR rehabilitation protocol in people with MdDS. Participants were allocated randomly to receive either Sham (n = 10) or Active (n = 10) iTBS, followed by the VOR rehabilitation protocol. Subjective outcome measures (symptom ratings and mental health scores) were collected 1 week pre-treatment and for 16 weeks post-treatment. Posturography (objective outcome) was recorded each day of the treatment week. RESULTS Significant improvements in subjective and objective outcomes were reported across both treatment groups over time, but no between-group differences were observed. DISCUSSION These findings support the effectiveness of the VOR rehabilitation protocol in reducing MdDS symptoms. Further research into iTBS is required to elucidate whether the treatment has a role in the management of MdDS. TRN: ACTRN12619001519145 (Date registered: 04 November 2019).
Collapse
Affiliation(s)
- Cherylea J Browne
- School of Science, Western Sydney University, Sydney, NSW, Australia.
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia.
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Western Sydney University, Translational Health and Research Institute, Sydney, NSW, Australia.
| | - S R Sheeba
- School of Science, Western Sydney University, Sydney, NSW, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
| | - T Astill
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - A Baily
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - C Deblieck
- Laboratory of Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - V Mucci
- School of Science, Western Sydney University, Sydney, NSW, Australia
| | - R Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
- Western Sydney University, Translational Health and Research Institute, Sydney, NSW, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Sun Y, Lei F, Zou K, Zheng Z. Rapid improvements and subsequent effects in major depressive disorder patients with somatic pain using rTMS combined with sertraline. Sci Rep 2023; 13:17973. [PMID: 37863972 PMCID: PMC10589316 DOI: 10.1038/s41598-023-44887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
This study aims to explore changes in depression and pain for major depressive disorder (MDD) patients with somatic pain after repetitive transcranial magnetic stimulation (rTMS) using the event-related potentials (ERPs) technique. Eighty MDD patients with somatic pain were randomly assigned to drug therapy (DT) and combined therapy (CT) groups. CT group underwent intermittent theta burst stimulation over the left dorsolateral prefrontal cortex (DLPFC) with 800 pulses and 1 Hz over the right DLPFC with 800 pulses, 5 times a week for 3 weeks. All patients were given sertraline at 50-100 mg per day. All subjects were evaluated at baseline and at weeks three and six of therapy using the Hamilton Rating Scale for Depression (HAMD), Hamilton Anxiety Scale (HAMA), and Numerical Rating Scales (NRS), and the latency and amplitude of P300 and mismatch negativity (MMN) were measured. There were no significant differences in all indices between groups at baseline. At 3 weeks, HAMD subscale scores of Cognitive Impairment and NRS scores were significantly lower in the CT group than in the DT group. At 6 weeks, NRS and HAMD total scores in the CT group decreased significantly in the CT group compared with the DT group, especially for anxiety and pain, and the MMN and P300 latencies and P300 amplitude showed greater improvements. Our findings highlight that rTMS in combination with antidepressants is a rapid method of symptom improvement in patients with somatic pain with MDD and is helpful for cognitive impairment and anxiety.
Collapse
Affiliation(s)
- Yuanfeng Sun
- Neurobiological Detection Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Lei
- Neurobiological Detection Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Zou
- Neurobiological Detection Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhong Zheng
- Neurobiological Detection Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|