1
|
Knudsen L, Guo F, Sharoh D, Huang J, Blicher JU, Lund TE, Zhou Y, Zhang P, Yang Y. The laminar pattern of proprioceptive activation in human primary motor cortex. Cereb Cortex 2025; 35:bhaf076. [PMID: 40233153 PMCID: PMC11998912 DOI: 10.1093/cercor/bhaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/16/2025] [Accepted: 03/09/2025] [Indexed: 04/17/2025] Open
Abstract
The primary motor cortex (M1) is increasingly being recognized for its vital role in proprioceptive somatosensation. However, our current understanding of proprioceptive processing at the laminar scale is limited. Empirical findings in primates and rodents suggest a pronounced role of superficial cortical layers, but the involvement of deep layers has yet to be examined in humans. Submillimeter resolution functional magnetic resonance imaging (fMRI) has emerged in recent years, paving the way for studying layer-dependent activity in humans (laminar fMRI). In the present study, laminar fMRI was employed to investigate the influence of proprioceptive somatosensation on M1 deep layer activation using passive finger movements. Significant M1 deep layer activation was observed in response to proprioceptive stimulation across 10 healthy subjects using a vascular space occupancy (VASO)-sequence at 7 T. For further validation, two additional datasets were included which were obtained using a balanced steady-state free precession sequence with ultrahigh (0.3 mm) in-plane resolution, yielding converging results. These results were interpreted in the light of previous laminar fMRI studies and the active inference account of motor control. We propose that a considerable proportion of M1 deep layer activation is due to proprioceptive influence and that deep layers of M1 constitute a key component in proprioceptive circuits.
Collapse
Affiliation(s)
- Lasse Knudsen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
| | - Fanhua Guo
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
| | - Daniel Sharoh
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Trigon 204, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
- Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen, 6525 XD, The Netherlands
| | - Jiepin Huang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
| | - Jakob U Blicher
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
- Department of Neurology, Aalborg University Hospital, Reberbansgade 15, Aalborg, 9000, Denmark
| | - Torben E Lund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, Aarhus, 8000, Denmark
| | - Yan Zhou
- Department of Neurosurgery, Air Force Medical Center, PLA, 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Peng Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Institute of Artificial Intelligence Hefei Comprehensive National Science Center, No. 5089 Wangjiang West Road, High-Tech Zone, Hefei, Anhui Province, 230088, China
| | - Yan Yang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, No 15 Datun Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100040, China
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Yanqihu East Road 1, Beijing, 101408, China
- Institute of Artificial Intelligence Hefei Comprehensive National Science Center, No. 5089 Wangjiang West Road, High-Tech Zone, Hefei, Anhui Province, 230088, China
| |
Collapse
|
2
|
Kotlarz P, Lankinen K, Hakonen M, Turpin T, Polimeni JR, Ahveninen J. Multilayer Network Analysis across Cortical Depths in Resting-State 7T fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.23.573208. [PMID: 38187540 PMCID: PMC10769454 DOI: 10.1101/2023.12.23.573208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In graph theory, "multilayer networks" represent systems involving several interconnected topological levels. One example in neuroscience is the stratification of connections between different cortical depths or "laminae", which is becoming non-invasively accessible in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer graph theory to examine functional connectivity across different cortical depths in humans, using 7T fMRI (1-mm3 voxels; 30 participants). Blood oxygenation level dependent (BOLD) signals were derived from five depths between the white matter and pial surface. We compared networks where the inter-regional connections were limited to a single cortical depth only ("layer-by-layer matrices") to those considering all possible connections between areas and cortical depths ("multilayer matrix"). We utilized global and local graph theory features that quantitatively characterize network attributes including network composition, nodal centrality, path-based measures, and hub segregation. Detecting functional differences between cortical depths was improved using multilayer connectomics compared to the layer-by-layer versions. Superficial depths of the cortex dominated information transfer and deeper depths drove clustering. These differences were largest in frontotemporal and limbic regions. fMRI functional connectivity across different cortical depths may contain neurophysiologically relevant information; thus, multilayer connectomics could provide a methodological framework for studies on how information flows across this stratification.
Collapse
Affiliation(s)
- Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Maria Hakonen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Pronold J, van Meegen A, Shimoura RO, Vollenbröker H, Senden M, Hilgetag CC, Bakker R, van Albada SJ. Multi-scale spiking network model of human cerebral cortex. Cereb Cortex 2024; 34:bhae409. [PMID: 39428578 PMCID: PMC11491286 DOI: 10.1093/cercor/bhae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan-Killiany parcellation is represented by a $1\,\mathrm{mm^{2}}$ column with a layered structure. The model aggregates data across multiple modalities, including electron microscopy, electrophysiology, morphological reconstructions, and diffusion tensor imaging, into a coherent framework. It predicts activity on all scales from the single-neuron spiking activity to the area-level functional connectivity. We compared the model activity with human electrophysiological data and human resting-state functional magnetic resonance imaging (fMRI) data. This comparison reveals that the model can reproduce aspects of both spiking statistics and fMRI correlations if the inter-areal connections are sufficiently strong. Furthermore, we study the propagation of a single-spike perturbation and macroscopic fluctuations through the network. The open-source model serves as an integrative platform for further refinements and future in silico studies of human cortical structure, dynamics, and function.
Collapse
Affiliation(s)
- Jari Pronold
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- RWTH Aachen University, D-52062 Aachen, Germany
| | - Alexander van Meegen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Renan O Shimoura
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
| | - Hannah Vollenbröker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Mario Senden
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, NL-6229 ER Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Centre, Maastricht University, NL-6229 ER Maastricht, The Netherlands
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, D-20246 Hamburg, Germany
| | - Rembrandt Bakker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, NL-6525 EN Nijmegen, The Netherlands
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
5
|
Yun SD, Küppers F, Shah NJ. Submillimeter fMRI Acquisition Techniques for Detection of Laminar and Columnar Level Brain Activation. J Magn Reson Imaging 2024; 59:747-766. [PMID: 37589385 DOI: 10.1002/jmri.28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Since the first demonstration in the early 1990s, functional MRI (fMRI) has emerged as one of the most powerful, noninvasive neuroimaging tools to probe brain functions. Subsequently, fMRI techniques have advanced remarkably, enabling the acquisition of functional signals with a submillimeter voxel size. This innovation has opened the possibility of investigating subcortical neural activities with respect to the cortical depths or cortical columns. For this purpose, numerous previous works have endeavored to design suitable functional contrast mechanisms and dedicated imaging techniques. Depending on the choice of the functional contrast, functional signals can be detected with high sensitivity or with improved spatial specificity to the actual activation site, and the pertaining issues have been discussed in a number of earlier works. This review paper primarily aims to provide an overview of the subcortical fMRI techniques that allow the acquisition of functional signals with a submillimeter resolution. Here, the advantages and disadvantages of the imaging techniques will be described and compared. We also summarize supplementary imaging techniques that assist in the analysis of the subcortical brain activation for more accurate mapping with reduced geometric deformation. This review suggests that there is no single universally accepted method as the gold standard for subcortical fMRI. Instead, the functional contrast and the corresponding readout imaging technique should be carefully determined depending on the purpose of the study. Due to the technical limitations of current fMRI techniques, most subcortical fMRI studies have only targeted partial brain regions. As a future prospect, the spatiotemporal resolution of fMRI will be pushed to satisfy the community's need for a deeper understanding of whole-brain functions and the underlying connectivity in order to achieve the ultimate goal of a time-resolved and layer-specific spatial scale. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Seong Dae Yun
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Fabian Küppers
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|