1
|
Rempel L, Sachdeva R, Krassioukov AV. Making the Invisible Visible: Understanding Autonomic Dysfunctions Following Spinal Cord Injury. Phys Med Rehabil Clin N Am 2025; 36:17-32. [PMID: 39567034 DOI: 10.1016/j.pmr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Autonomic dysfunctions are a major challenge to individuals following spinal cord injury. Despite this, these consequences receive far less attention compared with motor recovery. This review will highlight the major autonomic dysfunctions following SCI predominantly based on our present understanding of the anatomy and physiology of autonomic control and available clinical data.
Collapse
Affiliation(s)
- Lucas Rempel
- Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; ICORD-BSCC, UBC, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Hodgkiss DD, Balthazaar SJT, Welch JF, Wadley AJ, Cox PA, Lucas RAI, Veldhuijzen van Zanten JJCS, Chiou SY, Lucas SJE, Nightingale TE. Short- and long-term effects of transcutaneous spinal cord stimulation on autonomic cardiovascular control and arm-crank exercise capacity in individuals with a spinal cord injury (STIMEX-SCI): study protocol. BMJ Open 2025; 15:e089756. [PMID: 39819908 PMCID: PMC11751795 DOI: 10.1136/bmjopen-2024-089756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Individuals with higher neurological levels of spinal cord injury (SCI) at or above the sixth thoracic segment (≥T6), exhibit impaired resting cardiovascular control and responses during upper-body exercise. Over time, impaired cardiovascular control predisposes individuals to lower cardiorespiratory fitness and thus a greater risk for cardiovascular disease and mortality. Non-invasive transcutaneous spinal cord stimulation (TSCS) has been shown to modulate cardiovascular responses at rest in individuals with SCI, yet its effectiveness to enhance exercise performance acutely, or promote superior physiological adaptations to exercise following an intervention, in an adequately powered cohort is unknown. Therefore, this study aims to explore the efficacy of acute TSCS for restoring autonomic function at rest and during arm-crank exercise to exhaustion (AIM 1) and investigate its longer-term impact on cardiorespiratory fitness and its concomitant benefits on cardiometabolic health and health-related quality of life (HRQoL) outcomes following an 8-week exercise intervention (AIM 2). METHODS AND ANALYSIS Sixteen individuals aged ≥16 years with a chronic, motor-complete SCI between the fifth cervical and sixth thoracic segments will undergo a baseline TSCS mapping session followed by an autonomic nervous system (ANS) stress test battery, with and without cardiovascular-optimised TSCS (CV-TSCS). Participants will then perform acute, single-session arm-crank exercise (ACE) trials to exhaustion with CV-TSCS or sham TSCS (SHAM-TSCS) in a randomised order. Twelve healthy, age- and sex-matched non-injured control participants will be recruited and will undergo the same ANS tests and exercise trials but without TSCS. Thereafter, the SCI cohort will be randomly assigned to an experimental (CV-TSCS+ACE) or control (SHAM-TSCS+ACE) group. All participants will perform 48 min of ACE twice per week (at workloads corresponding to 73-79% peak oxygen uptake), over a period of 8 weeks, either with (CV-TSCS) or without (SHAM-TSCS) cardiovascular-optimised stimulation. The primary outcomes are time to exhaustion (AIM 1) and cardiorespiratory fitness (AIM 2). Secondary outcomes for AIM 1 include arterial blood pressure, respiratory function, cerebral blood velocity, skeletal muscle tissue oxygenation, along with concentrations of catecholamines, brain-derived neurotrophic factor and immune cell dynamics via venous blood sampling pre, post and 90 min post-exercise. Secondary outcomes for AIM 2 include cardiometabolic health biomarkers, cardiac function, arterial stiffness, 24-hour blood pressure lability, energy expenditure, respiratory function, neural drive to respiratory muscles, seated balance and HRQoL (eg, bowel, bladder and sexual function). Outcome measures will be assessed at baseline, pre-intervention, post-intervention and after a 6-week follow-up period (HRQoL questionnaires only). ETHICS AND DISSEMINATION Ethical approval has been obtained from the Wales Research Ethics Committee 7 (23/WA/0284; 03/11/2024). The recruitment process began in February 2024, with the first enrolment in July 2024. Recruitment is expected to be completed by January 2026. The results will be presented at international SCI and sport-medicine conferences and will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN17856698.
Collapse
Affiliation(s)
- Daniel D Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Shane J T Balthazaar
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Phoebe A Cox
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jet J C S Veldhuijzen van Zanten
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Malik RN, Samejima S, Shackleton C, Miller T, Pedrocchi ALG, Rabchevsky AG, Moritz CT, Darrow D, Field-Fote EC, Guanziroli E, Ambrosini E, Molteni F, Gad P, Mushahwar VK, Sachdeva R, Krassioukov AV. REPORT-SCS: minimum reporting standards for spinal cord stimulation studies in spinal cord injury. J Neural Eng 2024; 21:016019. [PMID: 38271712 DOI: 10.1088/1741-2552/ad2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective.Electrical spinal cord stimulation (SCS) has emerged as a promising therapy for recovery of motor and autonomic dysfunctions following spinal cord injury (SCI). Despite the rise in studies using SCS for SCI complications, there are no standard guidelines for reporting SCS parameters in research publications, making it challenging to compare, interpret or reproduce reported effects across experimental studies.Approach.To develop guidelines for minimum reporting standards for SCS parameters in pre-clinical and clinical SCI research, we gathered an international panel of expert clinicians and scientists. Using a Delphi approach, we developed guideline items and surveyed the panel on their level of agreement for each item.Main results.There was strong agreement on 26 of the 29 items identified for establishing minimum reporting standards for SCS studies. The guidelines encompass three major SCS categories: hardware, configuration and current parameters, and the intervention.Significance.Standardized reporting of stimulation parameters will ensure that SCS studies can be easily analyzed, replicated, and interpreted by the scientific community, thereby expanding the SCS knowledge base and fostering transparency in reporting.
Collapse
Affiliation(s)
- Raza N Malik
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alessandra Laura Giulia Pedrocchi
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alexander G Rabchevsky
- Spinal Cord & Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Chet T Moritz
- Departments of Electrical & Computer Engineering, Rehabilitation Medicine, and Physiology & Biophysics, and the Center for Neurotechnology, University of Washington, Seattle, WA, United States of America
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, United States of America
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Division of Physical Therapy, Atlanta, Georgia, United States of America
- Georgia Institute of Technology, School of Biological Sciences, Program in Applied Physiology, Atlanta, Georgia, United States of America
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Emilia Ambrosini
- Nearlab, Department di Electronics, Information and Bioengineering, and We-Cobot Laboratory, Polo Territoriale di Lecco, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Parag Gad
- SpineX Inc., Los Angeles, Los Angeles, CA, United States of America
| | - Vivian K Mushahwar
- Department of Medicine and Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Spinal Cord Research Program, G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|