1
|
Macom RV, Brown CM. Gastrointestinal Dysfunction and Dysbiosis in Ischemic Stroke: Opportunities for Therapeutic Intervention. Pharmaceuticals (Basel) 2025; 18:320. [PMID: 40143100 PMCID: PMC11944649 DOI: 10.3390/ph18030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/28/2025] Open
Abstract
Although strokes originate in the brain, it is now widely appreciated that peripheral organ systems are also impacted by stroke. The gastrointestinal system is one peripheral organ system that is impaired during ischemic stroke. This impairment results in numerous complications, which impede post-stroke recovery. Many of the gastrointestinal mechanisms that contribute to the pathophysiology of ischemic stroke remain poorly understood. This review will highlight the molecular and cellular mechanisms underlying gastrointestinal outcomes in stroke by focusing on the complex interactions that largely occur in the small intestine. The final portion of this review will focus on therapeutic interventions that target the gut as a strategy to prevent or delay functional impairment and cognitive disability in stroke patients.
Collapse
Affiliation(s)
- Rhiannon V. Macom
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Candice M. Brown
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| |
Collapse
|
2
|
Granados-Martinez C, Alfageme-Lopez N, Navarro-Oviedo M, Nieto-Vaquero C, Cuartero MI, Diaz-Benito B, Moro MA, Lizasoain I, Hernandez-Jimenez M, Pradillo JM. Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions. Biomedicines 2024; 12:2781. [PMID: 39767686 PMCID: PMC11673227 DOI: 10.3390/biomedicines12122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Stroke is one of the most devastating pathologies in terms of mortality, cause of dementia, major adult disability, and socioeconomic burden worldwide. Despite its severity, treatment options remain limited, with no pharmacological therapies available for hemorrhagic stroke (HS) and only fibrinolytic therapy or mechanical thrombectomy for ischemic stroke (IS). In the pathophysiology of stroke, after the acute phase, many patients develop systemic immunosuppression, which, combined with neurological dysfunction and hospital management, leads to the onset of stroke-associated infections (SAIs). These infections worsen prognosis and increase mortality. Recent evidence, particularly from experimental studies, has highlighted alterations in the microbiota-gut-brain axis (MGBA) following stroke, which ultimately disrupts the gut flora and increases intestinal permeability. These changes can result in bacterial translocation (BT) from the gut to sterile organs, further contributing to the development of SAIs. Given the novelty and significance of these processes, especially the role of BT in the development of SAIs, this review summarizes the latest advances in understanding these phenomena and discusses potential therapeutic strategies to mitigate them, ultimately reducing post-stroke complications and improving treatment outcomes.
Collapse
Affiliation(s)
- Cristina Granados-Martinez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Nuria Alfageme-Lopez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
| | - Manuel Navarro-Oviedo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Carmen Nieto-Vaquero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Isabel Cuartero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Blanca Diaz-Benito
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Maria Angeles Moro
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ignacio Lizasoain
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Macarena Hernandez-Jimenez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- AptaTargets S.L. Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Jesus Miguel Pradillo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| |
Collapse
|
3
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Role of the gut microbiota in complications after ischemic stroke. Front Cell Infect Microbiol 2024; 14:1334581. [PMID: 38644963 PMCID: PMC11026644 DOI: 10.3389/fcimb.2024.1334581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
4
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|