1
|
Ferreira-Rodrigues M, Sousa IS, Baptista FI, Coelho-Santos V. Stress in utero: prenatal dexamethasone exposure causes greater structural gliovascular alterations in female offspring than in males. Front Neurosci 2025; 19:1539867. [PMID: 40196234 PMCID: PMC11973320 DOI: 10.3389/fnins.2025.1539867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
From early in life, experiences like prenatal stress profoundly affect long-term health and behavior. Fetal exposure to increased levels of glucocorticoids (GC), via maternal stress or through antenatal corticosteroid therapy (commonly used in women at risk of preterm birth), can disrupt brain development and raise the susceptibility to psychiatric disorders. Previous studies on prenatal exposure to synthetic GCs, such as dexamethasone (DEX), revealed impairments in neurogenesis and dendritic spine development. However, the impact of prenatal stress, specifically antenatal DEX exposure, on the gliovascular interface remains unclear. This interface, involving the relationship between astrocytes and blood vessels, is essential for healthy brain development. Astrocytic endfeet coverage and organization are crucial features of the gliovascular interface, and in this study, we evaluated these aspects through aquaporin-4 (AQ4) expression and organization along the lectin labelled-vasculature. At Postnatal Day 14, no differences in AQ4 expression were observed between males and females. However, prenatal stress induced by DEX exposure (50 μg/kg was administered subcutaneously to pregnant mice through gestational days 16, 17 and 18) significantly impacted this structure in females but not in males. Specifically, in female offspring prenatally exposed to DEX, AQ4 expression was significantly upregulated in the hippocampus, and its rearrangement was observed in the prefrontal cortex. A comparison of vascular density between male and female brains showed no significant sex differences in any analyzed regions, though male cerebellar vessel segments were shorter. Interestingly, prenatal stress caused morphological alterations in female brains, including increased vessel tortuosity, while no such changes were seen in males. In the hippocampus, prenatal DEX exposure reduced vessel segment length in males but did not affect females. In the cerebellum, DEX exposure increased vessel segment length in females. This study highlights sex-specific differences in the impact of prenatal stress on the gliovascular structure across various brain regions, suggesting AQ4 as a potential molecular target relevant to depressive-like behaviors in female offspring. Future studies are needed to correlate the gliovascular structural alterations found with functional disturbances and sex-specific mental health issues.
Collapse
Affiliation(s)
- Magda Ferreira-Rodrigues
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC-UC), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
| | - Inês Santos Sousa
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Filipa I. Baptista
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, University of Coimbra, Coimbra, Portugal
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Sheng JA, Christenson JR, Schwerdtfeger LA, Tobet SA. Maternal immune activation by toll-like receptor 7 agonist during mid-gestation increases susceptibility to blood-brain barrier leakage after puberty. BRAIN BEHAVIOR AND IMMUNITY INTEGRATIVE 2024; 8:100081. [PMID: 39749157 PMCID: PMC11694724 DOI: 10.1016/j.bbii.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Maternal immune activation (MIA), a maternal stressor, increases risk for neuropsychiatric diseases, such as Major Depressive Disorder in offspring. MIA of toll-like receptor 7 (TLR7) initiates an immune response in mother and fetuses in a sex-selective manner. The paraventricular nucleus of the hypothalamus (PVN), a brain region that is sexually dimorphic and regulates hypothalamic-pituitary-adrenal (HPA) stress responses, have been tied to stress-related behaviors (i.e., depression, anxiety, social impairments). The current study characterized the sex-selective impact of mid-gestational TLR7 activation on PVN vasculature of adult offspring based on a prior study of excess prenatal glucocorticoid stress. The PVN of offspring were evaluated to determine if fetal MIA impacted vascular leakage in the brains of adult mice with or without restraint stress. Timed-pregnant female mice were administered the TLR7 agonist Resiquimod (RQ) or saline vehicle on embryonic day (E) 12.5. Basal and restraint stress-induced corticosterone was measured to examine changes in stress response. Mice were perfused transcardially with fluorescein isothiocyanate (FITC) to assess blood vessel integrity. Sections with FITC-labeled blood vessels through the PVN of offspring were immunolabeled for Glial Fibrillary Acidic Protein (GFAP; astrocytic end feet) and IBA-1 (microglia). MIA with RQ led to elevated levels of plasma corticosterone 60-minutes after restraint in offspring, suggesting prenatal RQ impairs glucocorticoid negative feedback. Blood-brain barrier integrity was assessed. Adult offspring of RQ injected dams showed greater leakage in the PVN (greater in males than females). GFAP+ colocalization with FITC-labeled vessels was lower in the PVN of offspring from RQ treated dams, potentially contributing to the observed increased FITC leakage. Microglia were examined in relation to the vasculature as an indicator of a neuroimmune response. Data show IBA-1+ cells greater in size and number in the PVN with closer proximity to blood vessels after maternal injection of RQ in a male-selective manner. Microglia were unchanged in females from RQ-treated dams but were smaller in size after restraint. This study provides support for sex-selective influences of fetal immune antecedents for altered brain vascular and blood brain barrier development and adult neuroendocrine function that could indicate a PVN locus for increased susceptibility for adult disorders.
Collapse
Affiliation(s)
- Julietta A. Sheng
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Luke A. Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stuart A. Tobet
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
3
|
Kim NH, Choo HI, Lee YA. Effect of nanoplastic intake on the dopamine system during the development of male mice. Neuroscience 2024; 555:11-22. [PMID: 39033990 DOI: 10.1016/j.neuroscience.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Exposure to environmental microplastics has been demonstrated to impact health. However, its effect on development remains unclear. This study investigated whether consumption of nanoplastics (NPx) during development affects social and cognitive functions in rodents. In this study, we utilized male Institute of Cancer Research mice; they were divided into five subgroups based on the duration of NPx administration. NPx (100 nm) was orally administered via gavage for 6 days from gestational day (GTD) 7, representing the mid-gestation period, and for 5-6 days from GTD13 to birth, representing the late-gestation period; the male offspring were used for experiments. NPx was orally administered for 15 days starting at postnatal day (PND) 21 as the juvenile, PND38 as the adolescent, and PND56 as adulthood. On PND77, offspring were assessed for locomotion, social behavior, and nest-building tests. We observed that NPx administration altered dopamine system responses in GTD13 and PND56 groups. Social behavior was similarly affected by NPx treatment, with GTD13 and PND56 groups displaying decreased familiarity. Additionally, NPx treatment enhanced local field potentials in the prefrontal cortex, nucleus accumbens, and amygdala of GTD7 group and in the striatum of GTD13 group, while amphetamine treatment induced changes of local field potentials compared to saline treatment in the prefrontal cortex and the ventral tegmental area of CTR, GTD7, PND21, and PND56 groups. Taken together, these results showed that NPx treatment induced changes in social behavior partly depending on developmental stage, and these changes are associated with neural circuits innervated by the dopamine system.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea
| | - Hye-In Choo
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea.
| |
Collapse
|
4
|
Xhonneux I, Marei WFA, Meulders B, Andries S, Leroy JLMR. The interplay of maternal and offspring obesogenic diets: the impact on offspring metabolism and muscle mitochondria in an outbred mouse model. Front Physiol 2024; 15:1354327. [PMID: 38585221 PMCID: PMC10995298 DOI: 10.3389/fphys.2024.1354327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Consumption of obesogenic (OB) diets increases the prevalence of maternal obesity worldwide, causing major psychological and social burdens in women. Obesity not only impacts the mother's health and fertility but also elevates the risk of obesity and metabolic disorders in the offspring. Family lifestyle is mostly persistent through generations, possibly contributing to the growing prevalence of obesity. We hypothesized that offspring metabolic health is dependent on both maternal and offspring diet and their interaction. We also hypothesized that the sensitivity of the offspring to the diet may be influenced by the match or mismatch between offspring and maternal diets. To test these hypotheses, outbred Swiss mice were fed a control (C, 10% fat, 7% sugar, and n = 14) or OB diet (60% fat, 20% sugar, and n = 15) for 7 weeks and then mated with the same control males. Mice were maintained on the same corresponding diet during pregnancy and lactation, and the offspring were kept with their mothers until weaning. The study focused only on female offspring, which were equally distributed at weaning and fed C or OB diets for 7 weeks, resulting in four treatment groups: C-born offspring fed C or OB diets (C » C and C » OB) and OB-born offspring fed C or OB diets (OB » C and OB » OB). Adult offspring's systemic blood profile (lipid and glucose metabolism) and muscle mitochondrial features were assessed. We confirmed that the offspring's OB diet majorly impacted the offspring's health by impairing the offspring's serum glucose and lipid profiles, which are associated with abnormal muscle mitochondrial ultrastructure. Contrarily, maternal OB diet was associated with increased expression of mitochondrial complex markers and mitochondrial morphology in offspring muscle, but no additive effects of (increased sensitivity to) an offspring OB diet were observed in pups born to obese mothers. In contrast, their metabolic profile appeared to be healthier compared to those born to lean mothers and fed an OB diet. These results are in line with the thrifty phenotype hypothesis, suggesting that OB-born offspring are better adapted to an environment with high energy availability later in life. Thus, using a murine outbred model, we could not confirm that maternal obesogenic diets contribute to female familial obesity in the following generations.
Collapse
Affiliation(s)
- Inne Xhonneux
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Waleed F. A. Marei
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ben Meulders
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Silke Andries
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L. M. R. Leroy
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|