1
|
Maruta J. The utility of artificial vestibular stimulation in decoding the pathophysiology of mal de débarquement syndrome. Front Neurol 2025; 16:1560787. [PMID: 40196864 PMCID: PMC11973082 DOI: 10.3389/fneur.2025.1560787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Maruta J. On labyrinthine function loss, motion sickness immunity, and velocity storage. Front Neurol 2024; 15:1426213. [PMID: 39006234 PMCID: PMC11239394 DOI: 10.3389/fneur.2024.1426213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Browne CJ, Sheeba SR, Astill T, Baily A, Deblieck C, Mucci V, Cavaleri R. Assessing the synergistic effectiveness of intermittent theta burst stimulation and the vestibular ocular reflex rehabilitation protocol in the treatment of Mal de Debarquement Syndrome: a randomised controlled trial. J Neurol 2024; 271:2615-2630. [PMID: 38345630 PMCID: PMC11055743 DOI: 10.1007/s00415-024-12215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Mal de Debarquement Syndrome (MdDS) is a rare central vestibular disorder characterised by a constant sensation of motion (rocking, swaying, bobbing), which typically arises after motion experiences (e.g. sea, air, and road travel), though can be triggered by non-motion events. The current standard of care is non-specific medications and interventions that only result in mild-to-moderate improvements. The vestibular ocular reflex (VOR) rehabilitation protocol, a specialised form of rehabilitation, has shown promising results in reducing symptoms amongst people with MdDS. Accumulating evidence suggests that it may be possible to augment the effects of VOR rehabilitation via non-invasive brain stimulation protocols, such as theta burst stimulation (TBS). METHODS The aim of this randomised controlled trial was to evaluate the effectiveness of intermittent TBS (iTBS) over the dorsolateral prefrontal cortex in enhancing the effectiveness of a subsequently delivered VOR rehabilitation protocol in people with MdDS. Participants were allocated randomly to receive either Sham (n = 10) or Active (n = 10) iTBS, followed by the VOR rehabilitation protocol. Subjective outcome measures (symptom ratings and mental health scores) were collected 1 week pre-treatment and for 16 weeks post-treatment. Posturography (objective outcome) was recorded each day of the treatment week. RESULTS Significant improvements in subjective and objective outcomes were reported across both treatment groups over time, but no between-group differences were observed. DISCUSSION These findings support the effectiveness of the VOR rehabilitation protocol in reducing MdDS symptoms. Further research into iTBS is required to elucidate whether the treatment has a role in the management of MdDS. TRN: ACTRN12619001519145 (Date registered: 04 November 2019).
Collapse
Affiliation(s)
- Cherylea J Browne
- School of Science, Western Sydney University, Sydney, NSW, Australia.
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia.
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Western Sydney University, Translational Health and Research Institute, Sydney, NSW, Australia.
| | - S R Sheeba
- School of Science, Western Sydney University, Sydney, NSW, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
| | - T Astill
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - A Baily
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - C Deblieck
- Laboratory of Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - V Mucci
- School of Science, Western Sydney University, Sydney, NSW, Australia
| | - R Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
- Western Sydney University, Translational Health and Research Institute, Sydney, NSW, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Schoenmaekers C, Jillings S, De Laet C, Zarowski A, Wuyts FL. Guideline for standardized approach in the treatment of the Mal de Debarquement syndrome. Front Neurol 2024; 15:1359116. [PMID: 38566854 PMCID: PMC10985174 DOI: 10.3389/fneur.2024.1359116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Mal de Debarquement Syndrome (MdDS) is a debilitating neuro-otological disorder. Patients experience almost continuously a perception of self-motion. This syndrome can be motion-triggered (MT-MdDS), such as on a boat, or occur spontaneously or have other triggers (SO-MdDS) in the absence of such motion. Because the pathophysiological mechanism is unknown, treatment options and symptom management strategies are limited. One available treatment protocol involves a readaptation of the vestibular ocular reflex (VOR). This study assesses the effectiveness of vestibulo-ocular reflex (VOR) readaptation in 131 consecutive patients with a fixed protocol. Methods We administered 131 treatments involving optokinetic stimulation (OKS) paired with a fixed head roll at 0.167 Hz over two to five consecutive days. Each day, four-minute treatment blocks were scheduled twice in the morning and afternoon. Treatment effectiveness was evaluated through questionnaires and posturography. Results We observed significant improvements in the visual analog scale (VAS), MdDS symptom questionnaire, and posturography measures from pre- to post-treatment. No significant differences were found in outcome variables between MT- and SO-MdDS onsets. Conclusion Symptoms improved subjectively and objectively in patients' post-treatment. The overall success rate was 64.1%, with no significant difference between MT (64.2%) and SO (63.3%). This study supports the conclusion that VOR readaptation treatment provides relief for two-thirds of MdDS patients, irrespective of the onset type. Based on consistency in the findings, we propose a standardized method for treatment of MdDS based on the OKS with head roll paradigm.
Collapse
Affiliation(s)
- Catho Schoenmaekers
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Wilrijk, Belgium
| | - Steven Jillings
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Wilrijk, Belgium
| | - Chloë De Laet
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Wilrijk, Belgium
| | - Andrzej Zarowski
- European Institute for ORL-HNS, Sint-Augustinus Hospital, Wilrijk, Belgium
| | - Floris L. Wuyts
- Lab for Equilibrium Investigations and Aerospace, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Maruta J, Cho C, Raphan T, Yakushin SB. Symptom reduction in mal de débarquement syndrome with attenuation of the velocity storage contribution in the central vestibular pathways. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1331135. [PMID: 38486679 PMCID: PMC10937418 DOI: 10.3389/fresc.2024.1331135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Background The velocity storage mechanism of the central vestibular system is closely associated with the vestibulo-ocular reflex (VOR), but also contributes to the sense of orientation in space and the perception of self-motion. We postulate that mal de débarquement syndrome (MdDS) is a consequence of inappropriate sensory adaptation of velocity storage. The premise that a maladapted velocity storage may be corrected by spatial readaptation of the VOR has recently been translated into the development of the first effective treatment for MdDS. However, this treatment's initial impact may be reversed by subsequent re-triggering events. Presently, we hypothesized that MdDS symptoms could alternatively be reduced by attenuating the velocity storage contribution in the central vestibular pathways. Methods Forty-three patients with MdDS (aged 47 ± 14 yo; 36 women) were randomly assigned to two treatment groups and followed for 6 months. The horizontal VOR was tested with chair rotation during laboratory visits, and the strength of velocity storage was quantified with model-based parameters-the time constant (Tc) and the gain of coupling from the vestibular primary afferent signals (g0). To attenuate velocity storage, Group 1 underwent a progressively intensifying series of low-frequency earth-vertical oscillatory rotation coupled to conflicting visual stimuli. Group 2 underwent an established protocol combining head tilts and visual stimulation, designed to correct maladapted spatial orientation but not change the velocity storage strength. The symptom severity was self-rated on an 11-point scale and reported before and up to 6 months after the treatment. Results In Group 1, velocity storage was modified through reduction of g0 (p < 0.001) but not Tc. The symptom rating was at least halved initially in 43% of Group 1 (p = 0.04), the majority of whom retained a similar level of improvement during the 6-month follow-up period. In Group 2, no systematic change was induced in the parameters of velocity storage strength, as expected. The symptom rating was at least halved initially in 80% of Group 2 (p < 0.001), but paralleling previous findings, symptoms often returned subsequently. Conclusion Attenuation of velocity storage shows promise as a lasting remedy for MdDS that can complement the VOR readaptation approach.
Collapse
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Catherine Cho
- Department of Neurology, NYU Langone Medical Center, New York, NY, United States
- Department of Otolaryngology, NYU Langone Medical Center, New York, NY, United States
| | - Theodore Raphan
- Department of Computer and Information Science, Brooklyn College, Institute for Neural and Intelligent Systems, New York, NY, United States
- The Graduate School and University Center of the City University of New York, New York, NY, United States
| | - Sergei B. Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Maruta J, Yakushin SB, Cho C. Creating Informed Interest in Mal De Débarquement Syndrome. Prim Care Companion CNS Disord 2023; 25:23lr03518. [PMID: 37471494 PMCID: PMC10543159 DOI: 10.4088/pcc.23lr03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York
- Corresponding Author: Jun Maruta, PhD, Department of Neurology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York
| | - Catherine Cho
- Department of Neurology, NYU Langone Medical Center, New York
- Department of Otolaryngology, NYU Langone Medical Center, New York
| |
Collapse
|