1
|
Wang W, Yin J. Identification of plasma exosomal microRNAs and bioinformatics analysis of the microRNA-messenger RNA regulatory pathways in mice with status epilepticus. Cytotechnology 2025; 77:65. [PMID: 39991702 PMCID: PMC11842689 DOI: 10.1007/s10616-025-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025] Open
Abstract
Status epilepticus (SE) is a serious neurological emergency that brings significant risks to health and life. microRNAs (miRNAs) and their targets show involvement in the pathophysiology of SE. We identified plasma exosomal miRNAs and analyzed the miRNA-messenger RNA (mRNA) regulatory pathways in SE mice. Mice were subjected to SE induction by kainic acid injection, and plasma exosome (Exo) extraction. Exo morphology, particle size distribution, and Exo-positive marker proteins were evaluated. Differentially-expressed miRNAs in Exos of SE mice were analyzed and verified by sequencing and RT-qPCR. Functional enrichment analysis on target genes and protein-protein interaction (PPI) network were performed. Hippocampal neuron cells HT-22 were cultured in vitro, and the targeted binding association between Exos-derived miR-205-5p and target genes was invalidated. There were 64 differentially-expressed miRNAs in plasma Exos of SE mice from healthy mice (32 up-regulated, 32 down-regulated). Among the top 10 differentially-expressed miRNAs, 5 were up-regulated, and 5 were down-regulated. The PPI network of collective target genes was developed, including 11 edges and 9 nodes. The genes related to nerve injury were phosphatase and tensin homolog (Pten), glycogen synthase kinase 3 beta (Gsk3b), and leucine-rich repeat kinase 2 (Lrrk2). SE mouse plasma Exos targeted Gsk3b, Lrrk2 and Pten in neuronal cells and reduced cell viability. Plasma exosomal miRNAs of SE mice were differentially expressed, and their target genes participated in the regulation of multiple pathways, mainly related to nervous system development. miR-205-5p could target Gsk3b, Lrrk2 and Pten, and suppress neuronal viability. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00708-8.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023 Liaoning People’s Republic of China
| | - Jian Yin
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023 Liaoning People’s Republic of China
| |
Collapse
|
2
|
Gao F, Yang Z, Li J. The miR-34a-5p Promotes Hippocampal Neuronal Ferroptosis in Epilepsy by Regulating SIRT1. Neurochem Res 2025; 50:124. [PMID: 40126751 DOI: 10.1007/s11064-025-04378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Epilepsy, one of the most prevalent neurological disorders, affects approximately 50 million individuals worldwide. MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of target genes at the post-transcriptional level by interacting with specific sequences of the target genes in a complementary manner, thus affecting a variety of biological processes. miR-34a-5p has been shown to be involved in the regulation of cellular ferroptosis, and we aimed to explore its expression in epilepsy and its mechanism of action in epileptic ferroptosis. Techniques such as Hoechst and eosin staining, Nissl staining, real-time quantitative polymerase chain reaction assays, Western blotting, immunofluorescence, dualluciferase reporter assays, and Lipid peroxidation-related assays were used to explore epilepsy pathogenesis. Markedly elevated miR-34a-5p expression levels were observed in the hippocampal regions of epileptic rats and magnesium-free hippocampal neuronal cultures. SIRT1 was identified as a direct target of miR-34a-5p. miR-34a-5p suppression reduced ACSL4, wnt3a, β-catenin, cyclin D1, iron ion, MDA and reactive oxygen species levels, while upregulating SIRT1, GPX4, Ferritin, and GSH expression levels. miR-34a-5p might modulate the Wnt/β-catenin signaling pathway, implicated in neuronal ferroptosis by directly targeting SIRT1. Our findings offer a potential therapeutic target to inhibit epilepsy progression.
Collapse
Affiliation(s)
- Fan Gao
- Department of Pediatrics, Yanbian University Hospital, Yanji, 133000, China
| | - Zhenlin Yang
- Department of Pediatrics, Yanbian University Hospital, Yanji, 133000, China
| | - Jinzi Li
- Department of Pediatrics, Yanbian University Hospital, Yanji, 133000, China.
| |
Collapse
|
3
|
Kasaiyan M, Basiri M, Pajouhanfar S. The role of miRNA134 in pathogenesis and treatment of intractable epilepsy: a review article. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:222-237. [PMID: 38531025 DOI: 10.1080/15257770.2024.2331046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
MicroRNA-134 (miRNA134) has emerged as a critical regulator in the pathogenesis of epilepsy, particularly in intractable cases resistant to conventional therapies. This review explores the multifaceted roles of miRNA134 in epileptogenesis, focusing on its influence on dendritic spine morphology and synaptic plasticity. Through its interactions with proteins such as LIM kinase 1 (LIMK1), Pumilio 2 (PUM2), and Tubby-like protein 1 (TULP1), miRNA134 modulates various molecular pathways implicated in epilepsy development. Preclinical studies have shown pro-mising results in targeting miRNA134 for mitigating seizure activity, highlighting its potential as a therapeutic target. Furthermore, miRNA134 holds promise as a biomarker for epilepsy diagnosis and prognosis, offering opportunities for personalized treatment approaches. However, further research is warranted to elucidate the precise mechanisms underlying miRNA134's effects and to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Maniya Kasaiyan
- Division of Child Neurology, Pediatrics Department, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Mohsen Basiri
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, NYCHHC/Queens, New York City, NY, USA
| | - Sara Pajouhanfar
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
de Araújo MA, Dos Santos Júnior ED, Dos Santos BP, Dos Santos YDR, Paulino PAT, Dos Santos EC, Souza TPM, Anhezini L, Bassi ÊJ, Duzzioni M, de Castro OW, de Andrade TG, Dornelas CB, Gitaí DLG. Layered double hydroxides (LDHs) as efficient and safe carriers for miRNA inhibitors: In vitro and in vivo assessment of biocompatibility. Chem Biol Interact 2024; 391:110874. [PMID: 38311162 DOI: 10.1016/j.cbi.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
Layered double hydroxides (LDHs) have been employed as nano-sized carriers for therapeutic/bio-active molecules, including small interfering RNAs (siRNAs). However, the potential of LDHs nanoparticles for an efficient and safe antisense oligonucleotide (AMO) delivery still requires studies. In this research, we have tested the suitability of a Mg-Al-LDH-based nanocarrier loaded with a miRNA-196b-5p inhibitor. LDHs (and LDH-Oligo complex) were synthesized by the coprecipitation method followed by physicochemical characterization as hydrodynamic size, surface charge, crystallinity, and chemical groups. Thymic endothelial cell line (tEnd.1) were transfected with LDH-Oligo and were evaluated for i. cell viability by MTT, trypan blue, and propidium iodide assays; ii. transfection efficiency by flow cytometry, and iii. depletion of miRNA-196b-5p by RT-qPCR. In addition, Drosophila melanogaster larvae were fed LDHs and evaluated for: i. larval motility; ii. pupation rate; iii. larval-pupal transition; iv. lethality, and v. emergence rate. We demonstrated that LDHs nanoparticles are stable in aqueous solutions and exhibit a regular hexagonal shape. The LDH-AMO complex showed a transfection efficiency of 93.95 ± 2.15 % and induced a significant depletion of miRNA-196b-5p 48h after transfection. No cytotoxic effects were detected in tEnd.1 cells at concentrations up to 50 μg/ml, as well as in Drosophila exposed up to 500 μg of LDH. In conclusion, our data suggest that LDHs are biocompatible and efficient carriers for miRNA inhibitors and can be used as a viable and effective tool in functional miRNA inhibition assays.
Collapse
Affiliation(s)
- Mykaella Andrade de Araújo
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil.
| | - Erivaldo Davi Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Bruna Priscila Dos Santos
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Ygor Daniel Ramos Dos Santos
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Pedro Augusto Tibúrcio Paulino
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Elane Conceição Dos Santos
- Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Tayhana Priscila Medeiros Souza
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Lucas Anhezini
- Laboratory for in Vivo Analysis of Toxicity and Neurodegenerative Diseases, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Ênio José Bassi
- Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Tiago Gomes de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Camila Braga Dornelas
- Laboratory for Active Substance Carrier Nanosystems Technology, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil.
| |
Collapse
|
5
|
Bertoli G, Fortunato F, Cava C, Manna I, Gallivanone F, Labate A, Panio A, Porro D, Gambardella A. Serum MicroRNAs as Predictors of Diagnosis and Drug-resistance in Temporal Lobe Epilepsy: A Preliminary Study. Curr Neuropharmacol 2024; 22:2422-2432. [PMID: 39403059 PMCID: PMC11451323 DOI: 10.2174/1570159x22666240516145823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most common form of refractory focal epilepsy, and the current clinical diagnosis is based on EEG, clinical neurological history and neuroimaging findings. METHODS So far, there are no blood-based molecular biomarkers of TLE to support clinical diagnosis, despite the pathogenic mechanisms underlying TLE involving defects in the regulation of gene expression. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression. RESULTS Recent studies show the feasibility of detecting miRNAs in body fluids; circulating miRNAs have emerged as potential clinical biomarkers in epilepsy, although the TLE miRNA profile needs to be addressed. Here, we analysed the diagnostic potential of 8 circulating miRNAs in sera of 52 TLE patients and 40 age- and sex-matched donor controls by RT-qPCR analyses. CONCLUSION We found that miR-34a-5p, -106b-5p, -130a-3p, -146a-5p, and -19a-3p are differently expressed in TLE compared to control subjects, suggesting a diagnostic role. Furthermore, we found that miR-34a-5p, -106b-5p, -146a-5p and miR-451a could become prognostic biomarkers, being differentially expressed between drug-resistant and drug-responsive TLE subjects. Therefore, serum miRNAs are diagnostic and drug-resistance predictive molecules of TLE.
Collapse
Affiliation(s)
- Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, Germaneto, Catanzaro, Italy
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- IUSS, Scuola Universitaria Superiore Pavia, Pv, Italy
| | - Ida Manna
- IBFM-CNR, Section of Germaneto, Catanzaro, Italy
| | - Francesca Gallivanone
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Italy
| | - Antonella Panio
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, Germaneto, Catanzaro, Italy
| |
Collapse
|
6
|
Kirmani BF, Au K, Ayari L, John M, Shetty P, Delorenzo RJ. Super-Refractory Status Epilepticus: Prognosis and Recent Advances in Management. Aging Dis 2021; 12:1097-1119. [PMID: 34221552 PMCID: PMC8219503 DOI: 10.14336/ad.2021.0302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Super-refractory status epilepticus (SRSE) is a life-threatening neurological emergency with high morbidity and mortality. It is defined as “status epilepticus (SE) that continues or recurs 24 hours or more after the onset of anesthesia, including those cases in which SE recurs on the reduction or withdrawal of anesthesia.” This condition is resistant to normal protocols used in the treatment of status epilepticus and exposes patients to increased risks of neuronal death, neuronal injury, and disruption of neuronal networks if not treated in a timely manner. It is mainly seen in patients with severe acute onset brain injury or presentation of new-onset refractory status epilepticus (NORSE). The mortality, neurological deficits, and functional impairments are significant depending on the duration of status epilepticus and the resultant brain damage. Research is underway to find the cure for this devastating neurological condition. In this review, we will discuss the wide range of therapies used in the management of SRSE, provide suggestions regarding its treatment, and comment on future directions. The therapies evaluated include traditional and alternative anesthetic agents with antiepileptic agents. The other emerging therapies include hypothermia, steroids, immunosuppressive agents, electrical and magnetic stimulation therapies, emergent respective epilepsy surgery, the ketogenic diet, pyridoxine infusion, cerebrospinal fluid drainage, and magnesium infusion. To date, there is a lack of robust published data regarding the safety and effectiveness of various therapies, and there continues to be a need for large randomized multicenter trials comparing newer therapies to treat this refractory condition.
Collapse
Affiliation(s)
- Batool F Kirmani
- 1Texas A&M University College of Medicine, College Station, TX, USA.,3Epilepsy and Functional Neurosurgery Program, Department of Neurology, CHI St. Joseph Health, Bryan, TX, USA
| | - Katherine Au
- 2George Washington University, School of Medicine & Health Sciences, Washington DC, USA
| | - Lena Ayari
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Marita John
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Padmashri Shetty
- 4M. S. Ramaiah Medical College, M. S. Ramaiah Nagar, Bengaluru, Karnataka, India
| | - Robert J Delorenzo
- 5Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
7
|
Circulating microRNA: The Potential Novel Diagnostic Biomarkers to Predict Drug Resistance in Temporal Lobe Epilepsy, a Pilot Study. Int J Mol Sci 2021; 22:ijms22020702. [PMID: 33445780 PMCID: PMC7828221 DOI: 10.3390/ijms22020702] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that have emerged as new potential epigenetic biomarkers. Here, we evaluate the efficacy of six circulating miRNA previously described in the literature as biomarkers for the diagnosis of temporal lobe epilepsy (TLE) and/or as predictive biomarkers to antiepileptic drug response. We measured the differences in serum miRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays in a cohort of 27 patients (14 women and 13 men; mean ± SD age: 43.65 ± 17.07) with TLE compared to 20 healthy controls (HC) matched for sex, age and ethnicity (11 women and 9 men; mean ± SD age: 47.5 ± 9.1). Additionally, patients were classified according to whether they had drug-responsive (n = 17) or drug-resistant (n = 10) TLE. We have investigated any correlations between miRNAs and several electroclinical parameters. Three miRNAs (miR-142, miR-146a, miR-223) were significantly upregulated in patients (expressed as average expression ± SD). In detail, miR-142 expression was 0.40 ± 0.29 vs. 0.16 ± 0.10 in TLE patients compared to HC (t-test, p < 0.01), miR-146a expression was 0.15 ± 0.11 vs. 0.07 ± 0.04 (t-test, p < 0.05), and miR-223 expression was 6.21 ± 3.65 vs. 1.23 ± 0.84 (t-test, p < 0.001). Moreover, results obtained from a logistic regression model showed the good performance of miR-142 and miR-223 in distinguishing drug-sensitive vs. drug-resistant TLE. The results of this pilot study give evidence that miRNAs are suitable targets in TLE and offer the rationale for further confirmation studies in larger epilepsy cohorts.
Collapse
|
8
|
Kim SH, Yun SW, Kim HR, Chae SA. Exosomal microRNA expression profiles of cerebrospinal fluid in febrile seizure patients. Seizure 2020; 81:47-52. [DOI: 10.1016/j.seizure.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/18/2023] Open
|
9
|
Chen SD, Pan HY, Huang JB, Liu XP, Li JH, Ho CJ, Tsai MH, Yang JL, Chen SF, Chen NC, Chuang YC. Circulating MicroRNAs from Serum Exosomes May Serve as a Putative Biomarker in the Diagnosis and Treatment of Patients with Focal Cortical Dysplasia. Cells 2020; 9:cells9081867. [PMID: 32785072 PMCID: PMC7465068 DOI: 10.3390/cells9081867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a congenital malformation of cortical development where the cortical neurons located in the brain area fail to migrate in the proper formation. Epilepsy, particularly medically refractory epilepsy, is the most common clinical presentation for all types of FCD. This study aimed to explore the expression change of circulating miRNAs in patients with FCD from serum exosomes. A total of nine patients with FCD and four healthy volunteers were enrolled in this study. The serum exosomes were isolated from the peripheral blood of the subjects. Transmission electron microscopy (TEM) was used to identify the exosomes. Both exosomal markers and neuronal markers were detected by Western blotting analysis to prove that we could obtain central nervous system-derived exosomes from the circulation. The expression profiles of circulating exosomal miRNAs were assessed using next-generation sequencing analysis (NGS). We obtained a total of 107 miRNAs with dominant fold change (>2-fold) from both the annotated 5p-arm and 3p-arm of 2780 mature miRNAs. Based on the integrated platform of HMDD v3.2, miRway DB and DIANA-miRPath v3.0 online tools, and confirmed by MiRBase analysis, four potentially predicted miRNAs from serum exosomes in patients with FCD were identified, including miR194-2-5p, miR15a-5p, miR-132-3p, and miR-145-5p. All four miRNAs presented upregulated expression in patients with FCD compared with controls. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and pathway category of four target miRNAs, we found eight possible signaling pathways that may be related to FCD. Among them, we suggest that the mTOR signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, and cell cycle regulation and TGF-beta signaling pathway are high-risk pathways that play a crucial role in the pathogenesis of FCD and refractory epilepsy. Our results suggest that the circulating miRNAs from exosomes may provide a potential biomarker for diagnostic, prognostic, and therapeutic adjuncts in patients with FCD and refractory epilepsy.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (H.-Y.P.); (J.-B.H.)
| | - Jyun-Bin Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (H.-Y.P.); (J.-B.H.)
| | - Xuan-Ping Liu
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
| | - Jie-Hau Li
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
| | - Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-D.C.); (C.-J.H.); (M.-H.T.); (S.-F.C.); (N.-C.C.)
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (X.-P.L.); (J.-H.L.); (J.-L.Y.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Huang J, Lu W, Doycheva DM, Gamdzyk M, Hu X, Liu R, Zhang JH, Tang J. IRE1α inhibition attenuates neuronal pyroptosis via miR-125/NLRP1 pathway in a neonatal hypoxic-ischemic encephalopathy rat model. J Neuroinflammation 2020; 17:152. [PMID: 32375838 PMCID: PMC7203836 DOI: 10.1186/s12974-020-01796-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inhibition of inositol-requiring enzyme-1 alpha (IRE1α), one of the sensor signaling proteins associated with endoplasmic reticulum (ER) stress, has been shown to alleviate brain injury and improve neurological behavior in a neonatal hypoxic-ischemic encephalopathy (HIE) rat model. However, there is no information about the role of IRE1α inhibitor as well as its molecular mechanisms in preventing neuronal pyroptosis induced by NLRP1 (NOD-, LRR- and pyrin domain-containing 1) inflammasome. In the present study, we hypothesized that IRE1α can degrade microRNA-125-b-2-3p (miR-125-b-2-3p) and activate NLRP1/caspased-1 pathway, and subsequently promote neuronal pyroptosis in HIE rat model. METHODS Ten-day old unsexed rat pups were subjected to hypoxia-ischemia (HI) injury, and the inhibitor of IRE1α, STF083010, was administered intranasally at 1 h after HI induction. AntimiR-125 or NLRP1 activation CRISPR was administered by intracerebroventricular (i.c.v) injection at 24 h before HI induction. Immunofluorescence staining, western blot analysis, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), brain infarct volume measurement, neurological function tests, and Fluoro-Jade C staining were performed. RESULTS Endogenous phosphorylated IRE1α (p-IRE1α), NLRP1, cleaved caspase-1, interleukin-1β (IL-1β), and interleukin-18 (IL-18) were increased and miR-125-b-2-3p was decreased in HIE rat model. STF083010 administration significantly upregulated the expression of miR-125-b-2-3p, reduced the infarct volume, improved neurobehavioral outcomes and downregulated the protein expression of NLRP1, cleaved caspase-1, IL-1β and IL-18. The protective effects of STF083010 were reversed by antimiR-125 or NLRP1 activation CRISPR. CONCLUSIONS IRE1α inhibitor, STF083010, reduced neuronal pyroptosis at least in part via miR-125/NLRP1/caspase-1 signaling pathway after HI.
Collapse
Affiliation(s)
- Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
| | - Xiao Hu
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Rui Liu
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, 11041 Campus St, Loma Linda, CA, 92350, USA.
| |
Collapse
|
11
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
12
|
Elnady HG, Abdelmoneam N, Eissa E, Hamid ERA, Zeid DA, Abo-Shanab AM, Atta H, Kholoussi NM. MicroRNAs as Potential Biomarkers for Childhood Epilepsy. Open Access Maced J Med Sci 2019; 7:3965-3969. [PMID: 32165937 PMCID: PMC7061375 DOI: 10.3889/oamjms.2019.634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epilepsy is the most frequent chronic neurologic condition in childhood. Its clinical diagnosis is based on electroencephalograms (EEG) and neuroimaging techniques. MicroRNAs (miRNAs) modulate gene expression of several genes and are aberrantly expressed in several diseases. AIM Evaluation of using circulating miR-106b and miR-146a as diagnostic and prognostic biomarkers in children patients with epilepsy. METHODS Thirty epileptic children and twenty controls were enrolled in our study. They were assessed for the expression pattern of miR-106b and miR-146a in plasma using quantitative real-time PCR and determination of plasma Immunoglobulin levels. RESULTS MiR-146a and miR-106b expression patterns were significantly up-regulated in children patients than that in normal controls. Plasma Immunoglobulins were differentially expressed in epileptic patients in comparison with healthy controls. No correlations were found between expression levels of miRNAs (miR-146a and miR-106b) and clinical data or immunoglobulin levels in children patients with epilepsy. CONCLUSION Our findings suggest that up-regulated plasma miR-106b and miR-146a could be used as biomarkers for epilepsy evaluation.
Collapse
Affiliation(s)
- Hala G Elnady
- Child Health Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Naglaa Abdelmoneam
- Pediatrics Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Eman Eissa
- Immunogenetics Department, Human Genetics & Genome Research Division, National Research Centre, Giza, Egypt
| | - Enas R Abdel Hamid
- Child Health Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Dina Abu Zeid
- Child Health Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Assem M Abo-Shanab
- Immunogenetics Department, Human Genetics & Genome Research Division, National Research Centre, Giza, Egypt
| | - Hanan Atta
- Child Health Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Naglaa M Kholoussi
- Immunogenetics Department, Human Genetics & Genome Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
13
|
Extracellular Vesicles in the Forebrain Display Reduced miR-346 and miR-331-3p in a Rat Model of Chronic Temporal Lobe Epilepsy. Mol Neurobiol 2019; 57:1674-1687. [PMID: 31813125 DOI: 10.1007/s12035-019-01797-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
Abstract
An initial precipitating injury in the brain, such as after status epilepticus (SE), evolves into chronic temporal lobe epilepsy (TLE). We investigated changes in the miRNA composition of extracellular vesicles (EVs) in the forebrain after the establishment of SE-induced chronic TLE. We induced SE in young Fischer 344 rats through graded intraperitoneal injections of kainic acid, which resulted in consistent spontaneous recurrent seizures at ~ 3 months post-SE. We isolated EVs from the entire forebrain of chronically epileptic rats and age-matched naïve control animals through an ultracentrifugation method and performed miRNA-sequencing studies to discern changes in the miRNA composition of forebrain-derived EVs in chronic epilepsy. EVs from both naïve and epileptic forebrains displayed spherical or cup-shaped morphology, a comparable size range, and CD63 expression but lacked the expression of a deep cellular marker GM130. However, miRNA-sequencing studies suggested downregulation of 3 miRNAs (miR-187-5p, miR-346, and miR-331-3p) and upregulation of 4 miRNAs (miR-490-5p, miR-376b-3p, miR-493-5p, and miR-124-5p) in EVs from epileptic forebrains with fold changes ranging from 1.5 to 2.4 (p < 0.0006; FDR < 0.05). By using geNorm and Normfinder software, we identified miR-487 and miR-221 as the best combination of reference genes for measurement of altered miRNAs found in the epileptic forebrain through qRT-PCR studies. The validation revealed that only miR-346 and miR-331-3p were significantly downregulated in EVs from the epileptic forebrain. The enrichment pathway analysis of these miRNAs showed an overrepresentation of signaling pathways that are linked to molecular mechanisms underlying chronic epilepsy, including GABA-ergic (miR-346 targets) and mTOR (miR-331-3p targets) systems. Thus, the packaging of two miRNAs into EVs in neural cells is considerably altered in chronic epilepsy. Functional studies on these two miRNAs may uncover their role in the pathophysiology and treatment of TLE.
Collapse
|
14
|
Du A, Cheng Y, Zhao S, Wei X, Zhou Y. MicroRNA expression profiling of nicotine-treated human periodontal ligament cells. J Oral Sci 2019; 61:206-212. [PMID: 31118359 DOI: 10.2334/josnusd.17-0403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Cigarette smoking is a lifestyle-related risk factor involved in the causation and progression of periodontal disease. Nicotine is a key toxic component of tobacco. However, the mechanisms underlying nicotine-induced periodontitis have not yet been fully elucidated. The present study investigated the microRNA (miRNA) expression profile of human periodontal ligament cells (PDLCs) treated with nicotine. Using differential analysis of miRNA array data, several differentially expressed miRNAs were identified in nicotine-treated PDLCs. Quantitative real-time PCR was employed to verify the accuracy of the miRNA array, and the targets of these dysregulated miRNAs were further analyzed. Function and pathway enrichment of differentially expressed miRNAs suggested that several important signaling pathways, such as the Toll-like receptor signaling pathway, nicotine addiction, the transforming growth factor-beta signaling pathway, and the hypoxia inducible factor-1 signaling pathway, are potentially responsible for nicotine-induced periodontitis. This study has helped to clarify the epigenetic mechanisms of nicotine-induced periodontitis, highlighting novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anqing Du
- Department of Stomatology, Pudong Hospital, Fudan University
| | - Yawei Cheng
- Department of Oral Anatomy, School of Dentistry, Chonbuk National University
| | - Sen Zhao
- Department of Orthodontics, School of Dentistry, Chonbuk National University
| | - Xiaoxia Wei
- Department of Orthodontics, School of Stomatology, First Affiliated Hospital of Zhengzhou University
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-Sen University
| |
Collapse
|
15
|
ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res 2019; 144:357-376. [PMID: 31051235 DOI: 10.1016/j.phrs.2019.04.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Drug-resistant epilepsy (DRE) affects approximately one third of epileptic patients. Among various theories that try to explain multidrug resistance, the transporter hypothesis is the most extensively studied. Accordingly, the overexpression of efflux transporters in the blood-brain barrier (BBB), mainly from the ATP binding cassette (ABC) superfamily, may be responsible for hampering the access of antiepileptic drugs into the brain. P-glycoprotein and other efflux transporters are known to be upregulated in endothelial cells, astrocytes and neurons of the neurovascular unit, a functional barrier critically involved in the brain penetration of drugs. Inflammation and oxidative stress involved in the pathophysiology of epilepsy together with uncontrolled recurrent seizures, drug-associated induction and genetic polymorphisms are among the possible causes of ABC transporters overexpression in DRE. The aforementioned pathological mechanisms will be herein discussed together with the multiple strategies to overcome the activity of efflux transporters in the BBB - from direct transporters inhibition to down-regulation of gene expression resorting to RNA interference (RNAi), or by targeting key modulators of inflammation and seizure-mediated signalling.
Collapse
|
16
|
Chua CEL, Tang BL. miR-34a in Neurophysiology and Neuropathology. J Mol Neurosci 2018; 67:235-246. [DOI: 10.1007/s12031-018-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
|
17
|
Cava C, Manna I, Gambardella A, Bertoli G, Castiglioni I. Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:275-290. [PMID: 30321815 PMCID: PMC6197620 DOI: 10.1016/j.omtn.2018.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Epilepsy includes a group of disorders of the brain characterized by an enduring predisposition to generate epileptic seizures. Although familial epilepsy has a genetic component and heritability, the etiology of the majority of non-familial epilepsies has no known associated genetic mutations. In epilepsy, recent epigenetic profiles have highlighted a possible role of microRNAs in its pathophysiology. In particular, molecular profiling identifies a significant number of microRNAs (miRNAs) altered in epileptic hippocampus of both animal models and human tissues. In this review, analyzing molecular profiles of different animal models of epilepsy, we identified a group of 20 miRNAs commonly altered in different epilepsy-animal models. As emerging evidences highlighted the poor overlap between signatures of animal model tissues and human samples, we focused our analysis on miRNAs, circulating in human biofluids, with a principal role in epilepsy hallmarks, and we identified a group of 8 diagnostic circulating miRNAs. We discussed the functional role of these 8 miRNAs in the epilepsy hallmarks. A few of them have also been proposed as therapeutic molecules for epilepsy treatment, revealing a great potential for miRNAs as theranostic molecules in epilepsy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia," Germaneto, 88100 Catanzaro, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
18
|
Tang C, Gu Y, Wang H, Wu H, Wang Y, Meng Y, Han Z, Gu Y, Ma W, Jiang Z, Song Y, Na M, Lu D, Lin Z. Targeting of microRNA-21-5p protects against seizure damage in a kainic acid-induced status epilepticus model via PTEN-mTOR. Epilepsy Res 2018; 144:34-42. [PMID: 29751355 DOI: 10.1016/j.eplepsyres.2018.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Studies have shown that microRNAs play a role in the development of epilepsy by regulating downstream target messenger (m)RNA. The present study aims to determine the changes associated with microRNA-21-5p (miR-21-5p) during epileptogenesis in a kainic acid rat model, and to assess whether the PTEN-mTOR pathway is a target of miR-21-5p. METHOD Reverse transcription polymerase chain reaction (RT-PCR) was used to examine the quantitative expressions of miR-21-5p and PTEN, and Western blotting was used to test the activity of mTOR in the acute, latent, and chronic stages of epileptogenesis. The antagomir of miR-21-5p was injected into the intracerebroventricular space using a microsyringe. Neuronal death and epilepsy discharge were assessed by Nissl staining and electroencephalography (EEG), respectively. The Morris water maze (MWM) was used to assess the cognitive impairment in rats after status epilepticus (SE). RESULTS Both miR-21-5p and mTOR were upregulated and PTEN was downregulated in rats during acute, latent, and chronic stages of epileptogenesis when compared with those of the control. After using antagomir miR-21-5p in vivo, miR-21-5p and mTOR decreased and the expression of PTEN increased compared with that in the SE model. The silencing of miR-21-5p diminished the number of abnormal spikes on EEG and decreased the number of neuron deletions on Nissl staining. The cognitive and memory impairment caused by epilepsy could also be improved after miR-21-5p knockdown in vivo. CONCLUSION The results of the present study demonstrate that PTEN-mTOR is the target of miR-21-5p in a kainic acid model of epilepsy. The knockout of miR-21-5p decreases the neuronal damage in stages of epileptogenesis. The miR-21-5p/PTEN/mTOR axis may be a potential target for preventing and treating seizures and epileptic damage.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Yunhe Gu
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Hongmei Wu
- Department of Pathology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Yu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Yao Meng
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Yifei Gu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Wei Ma
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Yuanyuan Song
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Dunyue Lu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
19
|
|
20
|
Wang X, Yin F, Li L, Kong H, You B, Zhang W, Chen S, Peng J. Intracerebroventricular injection of miR-146a relieves seizures in an immature rat model of lithium-pilocarpine induced status epilepticus. Epilepsy Res 2017; 139:14-19. [PMID: 29144992 DOI: 10.1016/j.eplepsyres.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Status epilepticus (SE) is a common, life-threatening neurological emergency that confers a high degree of morbidity and mortality. Increasing evidence indicates that neuroinflammation plays a critical role in the pathogenesis of SE. MicroRNA-146a (miR-146a) has been reported to be an important posttranscriptional inflammation-associated microRNA. The aim of this study was to investigate the effect of miR-146a in SE and the mechanism by which it operates. METHODS To study the effect of miR-146a in SE, we chose intracerebroventricular injection for rat at 21-28days old, and made a lithium-pilocarpine-induced SE rat model. We assessed latency time and Lado grade by behavior observation. We performed qPCR, ELISA and western blot tests on rat hippocampus to measure the expression levels of miR-146a, IL-1β, TNF-α, TLR4 and NF-κB. RESULTS In the miR-146a antagomir injection group, the latency to generalized convulsions was shorter, the duration and degree of seizures were more severe, the expression level of miR-146a was clearly decreased, and IL-1β, TNF-α, TLR4 and NF-κB were all significantly up-regulated. The opposite was true for rats treated with miR-146a agomir. CONCLUSION Our findings elucidate the role of inflammation in the pathogenesis of SE in immature rats, and show that regulating the expression level of miR-146a may provide a novel insights into the pathogenesis of SE.
Collapse
Affiliation(s)
- Xiaole Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, China; Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, China
| | - Linhong Li
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Huimin Kong
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Baiyang You
- Department of Cardiovascular, Xiangya Hospital of Central South University, China
| | - Weixi Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Shuyuan Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, China.
| |
Collapse
|
21
|
Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Sci Rep 2017; 7:11592. [PMID: 28912503 PMCID: PMC5599629 DOI: 10.1038/s41598-017-11510-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a common chronic neurological disease in humans. A number of studies have demonstrated differential expression of miRNAs in the hippocampus of humans with TLE and in animal models of experimental epilepsy. However, the dissimilarities in experimental design have led to largely discordant results across these studies. Thus, a comprehensive comparison is required in order to better characterize miRNA profiles obtained in various post-status epilepticus (SE) models. We therefore created a database and performed a meta-analysis of differentially expressed miRNAs across 3 post-SE models of epileptogenesis (electrical stimulation, pilocarpine and kainic acid) and human TLE with hippocampal sclerosis (TLE-HS). The database includes data from 11 animal post-SE studies and 3 human TLE-HS studies. A total of 378 differentially expressed miRNAs were collected (274 up-regulated and 198 down-regulated) and analyzed with respect to the post-SE model, time point and animal species. We applied the novel robust rank aggregation method to identify consistently differentially expressed miRNAs across the profiles. It highlighted common and unique miRNAs at different stages of epileptogenesis. The pathway analysis revealed involvement of these miRNAs in key pathogenic pathways underlying epileptogenesis, including inflammation, gliosis and deregulation of the extracellular matrix.
Collapse
|
22
|
Pan JY, Zhang F, Sun CC, Li SJ, Li G, Gong FY, Bo T, He J, Hua RX, Hu WD, Yuan ZP, Wang X, He QQ, Li DJ. miR-134: A Human Cancer Suppressor? MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 6:140-149. [PMID: 28325280 PMCID: PMC5363400 DOI: 10.1016/j.omtn.2016.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs approximately 20-25 nt in length, which play crucial roles through directly binding to corresponding 3' UTR of targeted mRNAs. It has been reported that miRNAs are involved in numerous of diseases, including cancers. Recently, miR-134 has been identified to dysregulate in handles of human cancers, such as lung cancer, glioma, breast cancer, colorectal cancer, and so on. Increasing evidence indicates that miR-134 is essential for human carcinoma and participates in tumor cell proliferation, apoptosis, invasion and metastasis, drug resistance, as well as cancer diagnosis, treatment, and prognosis. Nevertheless, its roles in human cancer are still ambiguous, and its mechanisms are sophisticated as well, referring to a variety of targets and signal pathways, such as STAT5B, KRAS, MAPK/ERK signal pathway, Notch pathway, etc. Herein, we review the crucial roles of miR-134 in scores of human cancers via analyzing latest investigations, which might provide evidence for cancer diagnose, treatment, prognosis, or further investigations.
Collapse
Affiliation(s)
- Jing-Yu Pan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China.
| | - Shu-Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China; Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, 430015 Wuhan, Hubei, P. R. China
| | - Guang Li
- Department of Oncology, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430034 Wuhan, Hubei, P. R. China
| | - Feng-Yun Gong
- Department of Infectious Diseases, Wuhan Medical Treatment Center, 430023 Wuhan, Hubei, P. R. China
| | - Tao Bo
- Department of Infectious Diseases, Wuhan Medical Treatment Center, 430023 Wuhan, Hubei, P. R. China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, Guangdong, P. R. China
| | - Rui-Xi Hua
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, Guangdong, P. R. China
| | - Wei-Dong Hu
- Department of Oncology, ZhongNan Hospital of Wuhan University, 430071 Wuhan, Hubei, P. R. China
| | - Zhan-Peng Yuan
- Department of Toxicology, School of Public Health, Wuhan University, 430071 Wuhan, P. R. China
| | - Xin Wang
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang 332000, China
| | - Qi-Qiang He
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, 430071 Wuhan, Hubei, P. R. China.
| |
Collapse
|
23
|
Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection. Int J Mol Sci 2017; 18:ijms18030490. [PMID: 28245590 PMCID: PMC5372506 DOI: 10.3390/ijms18030490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/31/2022] Open
Abstract
The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.
Collapse
|
24
|
Bhadra U, Patra P, Chhatai J, Pal-Bhadra M. Pigmy MicroRNA: surveillance cops in Therapies kingdom. Mol Med 2016; 22:759-775. [PMID: 27704139 PMCID: PMC5193465 DOI: 10.2119/molmed.2016.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are well preserved in every animal. These pigmy sized non-coding RNAs (21-23 nt), scattered in genome, are responsible for micromanaging the versatile gene regulations. Involvement of miRNAs was surveillance cops in all human diseases including cardiovascular defects, tumor formation, reproductive pathways, and neurological and autoimmune disorders. The effective functional role of miRNA can be reduced by chemical entities of antisense oligonucleotides and versatile small molecules that support the views of novel therapy of different human diseases. In this study, we have updated our current understanding for designing and synthesizing miRNA-controlling therapeutic chemicals. We have also proposed various in-vivo delivery strategies and their ongoing challenges to combat the incorporation hurdles in live cells and animals. Lastly, we have demonstrated the current progress of miRNA modulation in the treatment of different human diseases that provides an alternative approach of gene therapy.
Collapse
Affiliation(s)
- Utpal Bhadra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Pradipta Patra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Jagamohan Chhatai
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Uppal Road, Hyderabad, India
| |
Collapse
|
25
|
Surges R, Kretschmann A, Abnaof K, van Rikxoort M, Ridder K, Fröhlich H, Danis B, Kaminski RM, Foerch P, Elger CE, Weinsberg F, Pfeifer A. Changes in serum miRNAs following generalized convulsive seizures in human mesial temporal lobe epilepsy. Biochem Biophys Res Commun 2016; 481:13-18. [PMID: 27833019 DOI: 10.1016/j.bbrc.2016.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/07/2016] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and are involved in the pathomechanisms of epilepsy. MiRNAs may also serve as peripheral biomarkers of epilepsy. We investigated the miRNA profile in the blood serum of patients suffering from mesial temporal lobe epilepsy (mTLE) following a single focal seizure evolving to a bilateral convulsive seizure (BCS) during video-EEG monitoring. Data of 15 patients were included in the final analysis. MiRNA expression was determined using Real Time-PCR followed by thorough bioinformatical analysis of expression levels. We found that more than 200 miRNAs were differentially expressed in the serum of patients within 30 min after a single seizure. Validation of the 20 top miRNA candidates confirmed that 4 miRNAs (miR-143, miR-145, miR-532, miR-365a) were significantly deregulated. Interestingly, in a sub-group of patients with seizures occurring during sleep, we found 10 miRNAs to be deregulated up to 20-28 h after the seizure. In this group of patients, miR-663b was significantly deregulated. We conclude that single seizures are associated with detectable transient miRNA alterations in blood serum in the early postictal phase. The significant upregulation of miR-663b following BCS arising during sleep indicates potential suitability of this miRNA as a potential biomarker for seizure diagnostics.
Collapse
Affiliation(s)
- Rainer Surges
- Department of Epileptology, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Anita Kretschmann
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Khalid Abnaof
- Bonn-Aachen International Center for Information Technology (B-IT), Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113, Bonn, Germany
| | - Marijke van Rikxoort
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Kirsten Ridder
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Holger Fröhlich
- Bonn-Aachen International Center for Information Technology (B-IT), Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113, Bonn, Germany
| | - Bénédicte Danis
- UCB Pharma GmbH, Alfred-Nobel-Straße 10, 40789, Monheim, Germany
| | - Rafal M Kaminski
- UCB Pharma GmbH, Alfred-Nobel-Straße 10, 40789, Monheim, Germany
| | - Patrik Foerch
- UCB Pharma GmbH, Alfred-Nobel-Straße 10, 40789, Monheim, Germany
| | - Christian E Elger
- Department of Epileptology, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Frank Weinsberg
- UCB Pharma GmbH, Alfred-Nobel-Straße 10, 40789, Monheim, Germany.
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
26
|
Wang X, Yin H, Rich AM, Sun Y, Tan Z, Luo X, Che N, Wei M, Yin J. MicroRNAs as biomarkers in molecular diagnosis of refractory epilepsy. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
27
|
de Araújo MA, Marques TEBS, Octacílio-Silva S, de Arroxelas-Silva CL, Pereira MGAG, Peixoto-Santos JE, Kandratavicius L, Leite JP, Garcia-Cairasco N, Castro OW, Duzzioni M, Passos GA, Paçó-Larson ML, Góes Gitaí DL. Identification of microRNAs with Dysregulated Expression in Status Epilepticus Induced Epileptogenesis. PLoS One 2016; 11:e0163855. [PMID: 27695061 PMCID: PMC5047645 DOI: 10.1371/journal.pone.0163855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The involvement of miRNA in mesial temporal lobe epilepsy (MTLE) pathogenesis has increasingly become a focus of epigenetic studies. Despite advances, the number of known miRNAs with a consistent expression response during epileptogenesis is still small. Addressing this situation requires additional miRNA profiling studies coupled to detailed individual expression analyses. Here, we perform a miRNA microarray analysis of the hippocampus of Wistar rats 24 hours after intra-hippocampal pilocarpine-induced Status Epilepticus (H-PILO SE). We identified 73 miRNAs that undergo significant changes, of which 36 were up-regulated and 37 were down-regulated. To validate, we selected 5 of these (10a-5p, 128a-3p, 196b-5p, 352 and 324-3p) for RT-qPCR analysis. Our results confirmed that miR-352 and 196b-5p levels were significantly higher and miR-128a-3p levels were significantly lower in the hippocampus of H-PILO SE rats. We also evaluated whether the 3 miRNAs show a dysregulated hippocampal expression at three time periods (0h, 24h and chronic phase) after systemic pilocarpine-induced status epilepticus (S-PILO SE). We demonstrate that miR-128a-3p transcripts are significantly reduced at all time points compared to the naïve group. Moreover, miR-196b-5p was significantly higher only at 24h post-SE, while miR-352 transcripts were significantly up-regulated after 24h and in chronic phase (epileptic) rats. Finally, when we compared hippocampi of epileptic and non-epileptic humans, we observed that transcript levels of miRNAs show similar trends to the animal models. In summary, we successfully identified two novel dysregulated miRNAs (196b-5p and 352) and confirmed miR-128a-3p downregulation in SE-induced epileptogenesis. Further functional assays are required to understand the role of these miRNAs in MTLE pathogenesis.
Collapse
Affiliation(s)
- Mykaella Andrade de Araújo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Shirley Octacílio-Silva
- Department of Morphology, Health and Biological Sciences Center, Federal University of Sergipe, Aracajú, Sergipe, Brazil
| | - Carmem Lúcia de Arroxelas-Silva
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - José Eduardo Peixoto-Santos
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Olagide Wagner Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
28
|
Wu TH, Yin F, Peng J, Kong HM, Li LH. [Effect of a microRNA-132 antagonist on pilocarpine-induced status epilepticus in young rats]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1030-1034. [PMID: 27751226 PMCID: PMC7389546 DOI: 10.7499/j.issn.1008-8830.2016.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the effect of a microRNA-132 antagonist on lithium-pilocarpine-induced status epilepticus (SE) in young Sprague-Dawley (SD) rats. METHODS Forty-five 3-week-old SD rats were randomly and equally divided into epilepticus model group, microRNA-132 antagonist group, and microRNA-132 antagonist negative control group. The young SD rat model of SE was established using lithium-pilocarpine. For the microRNA-132 antagonist group and the negative control group, pretreatment was performed 24 hours before the model establishment. Behavioral observation was performed to assess the latency of SE and success rate of induction of SE. The scale of Lado was used to evaluate the seizure severity. Electroencephalography (EEG) was used to assess the frequency and amplitude of epileptiform discharges. The mortality rate was calculated in each group. RESULTS There was no significant difference in the success rate of induction of SE between the three groups (P>0.05). Compared with the microRNA-132 negative control group and the epilepticus model group, the microRNA-132 antagonist group had significantly prolonged SE latency after model establishment (P<0.05), a significantly lower Lado score of seizure (P<0.05), significantly lower frequency and amplitude of epileptiform discharges on EEG (P<0.05), and a slightly reduced mortality rate. CONCLUSIONS The treatment with the microRNA-132 antagonist shows an inhibitory effect on the development and progression of lithium-pilocarpine-induced SE in young SD rats. The inhibition of microRNA-132 is likely to be a potential target or direction for drug treatment of SE.
Collapse
Affiliation(s)
- Tian-Hui Wu
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha 410008, China.
| | | | | | | | | |
Collapse
|
29
|
Gan J, Qu Y, Li J, Zhao F, Mu D. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci 2016; 26:225-37. [PMID: 25719305 DOI: 10.1515/revneuro-2014-0062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/05/2014] [Indexed: 11/15/2022]
Abstract
Epilepsy is a serious chronic neurologic disorder characterized by recurrent unprovoked seizures resulting from abnormal and highly synchronous neuronal discharges within the brain. Small noncoding RNAs, called microRNAs, play vital roles in epileptogenesis, with potential contributions as valuable biomarkers and targets for the treatment of epilepsy. To maintain cellular homeostasis, cellular components, such as organelles, proteins, protein complexes/oligomers, and pathogens, are delivered to the lysosome for degradation through a process called autophagy, which plays either a protective or a harmful role under epileptic stress. Several autophagic mechanisms have been implicated in epileptogenesis, including the mammalian target of rapamycin pathway, aberrant substrate accumulation, and the formation of epileptic networks. In addition, the regulation of autophagy through microRNAs (miRNAs) represents a novel posttranscriptional regulatory mechanism through 'autophagamiRNAs'. The correlation between autophagy and miRNA has increased our understanding of the underlying pathogenesis of human diseases. Here, we review the current findings regarding the correlations between miRNA, autophagy, and epilepsy to provide a solid foundation for further examination of the miRNA-autophagy pathway involved in epilepsy pathophysiology.
Collapse
|
30
|
MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process. Neural Plast 2016; 2016:5108489. [PMID: 27579184 PMCID: PMC4992765 DOI: 10.1155/2016/5108489] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 12/03/2022] Open
Abstract
Increasing evidence suggests that epilepsy is the result of synaptic reorganization and pathological excitatory loop formation in the central nervous system; however, the mechanisms that regulate this process are not well understood. We proposed that microRNA-132 (miR-132) and p250GAP might play important roles in this process by activating the downstream Rho GTPase family. We tested this hypothesis using a magnesium-free medium-induced epileptic model of cultured hippocampal neurons. We investigated whether miR-132 regulates GTPase activity through p250GAP and found that Cdc42 was significantly activated in our experimental model. Silencing miR-132 inhibited the electrical excitability level of cultured epileptic neurons, whereas silencing p250GAP had an opposite effect. In addition, we verified the effect of miR-132 in vivo and found that silencing miR-132 inhibited the aberrant formation of dendritic spines and chronic spontaneous seizure in a lithium-pilocarpine-induced epileptic mouse model. Finally, we confirmed that silencing miR-132 has a neuroprotective effect on cultured epileptic neurons; however, this effect did not occur through the p250GAP pathway. Generally, silencing miR-132 may suppress spontaneous seizure activity through the miR-132/p250GAP/Cdc42 pathway by regulating the morphology and electrophysiology of dendritic spines; therefore, miR-132 may serve as a potential target for the development of antiepileptic drugs.
Collapse
|
31
|
Du A, Zhao S, Wan L, Liu T, Peng Z, Zhou Z, Liao Z, Fang H. MicroRNA expression profile of human periodontal ligament cells under the influence of Porphyromonas gingivalis LPS. J Cell Mol Med 2016; 20:1329-38. [PMID: 26987780 PMCID: PMC4929301 DOI: 10.1111/jcmm.12819] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/23/2016] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease which is caused by bacterial infection and leads to the destruction of periodontal tissues and resorption of alveolar bone. Thus, special attention should be paid to the mechanism under lipopolysaccharide (LPS)-induced periodontitis because LPS is the major cause of periodontitis. However, to date, miRNA expression in the LPS-induced periodontitis has not been well characterized. In this study, we investigated miRNA expression patterns in LPS-treated periodontal ligament cells (PDLCs). Through miRNA array and differential analysis, 22 up-regulated miRNAs and 28 down-regulated miRNAs in LPS-treated PDLCs were identified. Seven randomly selected up-regulated (miR-21-5p, 498, 548a-5p) and down-regulated (miR-495-3p, 539-5p, 34c-3p and 7a-2-3p) miRNAs were examined by qRT-PCR, and the results proved the accuracy of the miRNA array. Moreover, targets of these deregulated miRNAs were analysed using the miRWalk database. Database for Annotation, Visualization and Integration Discovery software were performed to analyse the Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway of differential expression miRNAs, and the results shown that Toll-like receptor signalling pathway, cAMP signalling pathway, transforming growth factor-beta signalling pathway, mitogen-activated protein kinase (MAPK) signalling pathway and other pathways were involved in the molecular mechanisms underlying LPS-induced periodontitis. In conclusion, this study provides clues for enhancing our understanding of the mechanisms and roles of miRNAs as key regulators of LPS-induced periodontitis.
Collapse
Affiliation(s)
- Anqing Du
- Department of Stomatology, JinShan Hospital, FuDan University, JinShan District, ShangHai, China
| | - Sen Zhao
- Department of Orthodontics, Dental Hospital of HeNan Province, ZhengZhou University, ZhengZhou, HeNan, China
| | - LingYun Wan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, ChengDu, China
| | - TianTao Liu
- Key Laboratory of Oral Medicine, GuangZhou Institute of Oral Disease, Stomatology Hospital of GuangZhou Medical University, GuangZhou, China
| | - Zaoxia Peng
- Department of Stomatology, The First Teaching Hospital of Xinjiang Medical University, Urumqi, China
| | - ZiYu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhengyu Liao
- Affliated Stomatological Hospital of NanChang University, NanChang, JiangXi Province, China
| | - Huan Fang
- Department of Pharmacy, JinShan Hospital, FuDan University, JinShan District, ShangHai, China
| |
Collapse
|
32
|
Association of the genetic polymorphisms in pre-microRNAs with risk of childhood epilepsy in a Chinese population. Seizure 2016; 40:21-6. [PMID: 27310665 DOI: 10.1016/j.seizure.2016.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/03/2023] Open
Abstract
PURPOSE MicroRNA (miRNA), functions as gene regulators, plays crucial roles in pathogenesis of epilepsy. We hypothesized that single nucleotide polymorphisms (SNPs) in miRNA may be associated with childhood epilepsy. METHOD We first genotyped the selected four SNPs (miR-146a rs57095329, miR-149 rs2292832, miR-196a2 rs11614913, and miR-499 rs3746444) in 267 paired childhood epilepsy patients and controls using the TaqMan assay, and evaluated the associations of the four SNPs with the risk of epilepsy. In addition, we evaluated the associations of these SNPs with drug-resistance in 95 drug-resistant and 172 drug-responsive epilepsy patients. Furthermore, the genotype-phenotype correlation was assessed in 95 drug-resistant epilepsy patients. RESULTS The selected four SNPs (miR-146a rs57095329, miR-149 rs2292832, miR-196a2 rs11614913, and miR-499 rs3746444) were not significantly different between epilepsy patients and controls (P>0.05 for all). However, the miR-146a rs57095329 A/G genotypes were significantly associated with increased drug-resistance risk of epilepsy patients in allelic comparison (OR=2.363, 95%CI=1.608-3.472, P<0.001), heterozygote model (OR=2.341, 95%CI=1.301-4.211, P=0.005), homozygote model (OR=1.791, 95%CI=1.239-2.589, P=0.002), dominant model (OR=2.625, 95%CI=1.558-4.425, P<0.001), and recessive model (OR=2.336, 95%CI=1.166-4.673, P=0.017). Moreover, subjects with the rs57095329 GG genotype had significantly higher NHS3 score than subjects with AA genotype (P<0.001) and AG genotype (P=0.013) in the drug resistant patients. CONCLUSION miR-146a rs57095329 polymorphism might be involved in the genetic susceptibility to drug-resistance and seizure severity in childhood epilepsy patients.
Collapse
|
33
|
van Scheppingen J, Iyer AM, Prabowo AS, Mühlebner A, Anink JJ, Scholl T, Feucht M, Jansen FE, Spliet WG, Krsek P, Zamecnik J, Buccoliero AM, Giordano F, Genitori L, Kotulska K, Jozwiak S, Jaworski J, Liszewska E, van Vliet EA, Aronica E. Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell cultures. Glia 2016; 64:1066-82. [PMID: 27014996 DOI: 10.1002/glia.22983] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease presenting with multiple neurological symptoms including epilepsy, mental retardation, and autism. Abnormal activation of various inflammatory pathways has been observed in astrocytes in brain lesions associated with TSC. Increasing evidence supports the involvement of microRNAs in the regulation of astrocyte-mediated inflammatory response. To study the role of inflammation-related microRNAs in TSC, we employed real-time PCR and in situ hybridization to characterize the expression of miR21, miR146a, and miR155 in TSC lesions (cortical tubers and subependymal giant cell astrocytomas, SEGAs). We observed an increased expression of miR21, miR146a, and miR155 in TSC tubers compared with control and perituberal brain tissue. Expression was localized in dysmorphic neurons, giant cells, and reactive astrocytes and positively correlated with IL-1β expression. In addition, cultured human astrocytes and SEGA-derived cell cultures were used to study the regulation of the expression of these miRNAs in response to the proinflammatory cytokine IL-1β and to evaluate the effects of overexpression or knockdown of miR21, miR146a, and miR155 on inflammatory signaling. IL-1β stimulation of cultured glial cells strongly induced intracellular miR21, miR146a, and miR155 expression, as well as miR146a extracellular release. IL-1β signaling was differentially modulated by overexpression of miR155 or miR146a, which resulted in pro- or anti-inflammatory effects, respectively. This study provides supportive evidence that inflammation-related microRNAs play a role in TSC. In particular, miR146a and miR155 appear to be key players in the regulation of astrocyte-mediated inflammatory response, with miR146a as most interesting anti-inflammatory therapeutic candidate.
Collapse
Affiliation(s)
- J van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A M Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A S Prabowo
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A Mühlebner
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - J J Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - F E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W G Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - P Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - J Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - A M Buccoliero
- Pathology Unit, Anna Meyer Children's Hospital, Florence, Italy
| | - F Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - L Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - K Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - S Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - J Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - E Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - E A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| |
Collapse
|
34
|
Abstract
Epilepsy is a common type of neurological disorder with complex etiology. The mechanisms are still not clear. MicroRNAs are endogenous noncoding RNAs with many physiological activities. Multiple microRNAs were abnormally expressed in status epilepticus, including miR-210. In this study, we applied lithium chloride and pilocarpine to induce epileptic activity and aimed to disclose the potential mechanisms. Our data showed that miR-210 was significantly upregulated in hippocampus one day after modeling (P<0.05 vs control) and the high expression of miR-210 lasted for at least 30 days. By contrast, γ-aminobutyric acid (GABA) level significantly decreased concurrently after modeling (P<0.05 vs control). To question whether miR-210 could be a potential therapeutic target for epilepsy, miR-210 inhibitor was administrated through intrahippocampal injection after epilepsy modeling. Our data showed that morphological changes of hippocampal neurons and apoptosis triggered by epilepsy were mitigated by miR-210 inhibition. More importantly, the expressions of GABA-related proteins, including GABAA receptor α1, glutamate decarboxylase, and GABA transporter 1, were significantly elevated after epilepsy modeling in both mRNA and protein levels 3 days postmodeling (P<0.05 vs control), which were mitigated by miR-210 inhibitor treatment (P<0.05 vs model). In addition, epilepsy-induced upregulation of GABA transaminase was alleviated by miR-210 inhibitor. Taken together, these data implicated potential roles of miR-210 in lithium chloride-pilocarpine-induced epilepsy model and miR-210 could serve as a potential therapeutic target in status epilepticus.
Collapse
Affiliation(s)
- Licheng Chen
- Neurological Department of Internal Medicine, Linyi People's Hospital of Shandong Province, Linyi, People's Republic of China
| | - Hao Zheng
- Neurological Department of Internal Medicine, Linyi People's Hospital of Shandong Province, Linyi, People's Republic of China
| | - Shimeng Zhang
- Neurological Department of Internal Medicine, Linyi People's Hospital of Shandong Province, Linyi, People's Republic of China
| |
Collapse
|
35
|
Jimenez-Mateos EM, Arribas-Blazquez M, Sanz-Rodriguez A, Concannon C, Olivos-Ore LA, Reschke CR, Mooney CM, Mooney C, Lugara E, Morgan J, Langa E, Jimenez-Pacheco A, Silva LFA, Mesuret G, Boison D, Miras-Portugal MT, Letavic M, Artalejo AR, Bhattacharya A, Diaz-Hernandez M, Henshall DC, Engel T. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep 2015; 5:17486. [PMID: 26631939 PMCID: PMC4668358 DOI: 10.1038/srep17486] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/30/2015] [Indexed: 01/08/2023] Open
Abstract
The ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus. P2X7R-gated inward currents were suppressed in the contralateral hippocampus and P2rx7 mRNA was selectively uploaded into the RNA-induced silencing complex (RISC), suggesting microRNA targeting. Analysis of RISC-loaded microRNAs using a high-throughput platform, as well as functional assays, suggested the P2X7R is a target of microRNA-22. Inhibition of microRNA-22 increased P2X7R expression and cytokine levels in the contralateral hippocampus after status epilepticus and resulted in more frequent spontaneous seizures in mice. The major pro-inflammatory and hyperexcitability effects of microRNA-22 silencing were prevented in P2rx7−/− mice or by treatment with a specific P2X7R antagonist. Finally, in vivo injection of microRNA-22 mimics transiently suppressed spontaneous seizures in mice. The present study supports a role for post-transcriptional regulation of the P2X7R and suggests therapeutic targeting of microRNA-22 may prevent inflammation and development of a secondary epileptogenic focus in the brain.
Collapse
Affiliation(s)
- Eva M Jimenez-Mateos
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marina Arribas-Blazquez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Amaya Sanz-Rodriguez
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caoimhin Concannon
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luis A Olivos-Ore
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina R Reschke
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire M Mooney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine Mooney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eleonora Lugara
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James Morgan
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elena Langa
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alba Jimenez-Pacheco
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Guillaume Mesuret
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Detlev Boison
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - M Teresa Miras-Portugal
- Department of Biochemistry, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Michael Letavic
- Janssen Research &Development, LLC, Neuroscience, 3210 Merryfield Row, San Diego, CA 92121, San Diego, USA
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Anindya Bhattacharya
- Janssen Research &Development, LLC, Neuroscience, 3210 Merryfield Row, San Diego, CA 92121, San Diego, USA
| | - Miguel Diaz-Hernandez
- Department of Biochemistry, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - David C Henshall
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
36
|
Srivastava A, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P. Role of inflammation and its miRNA based regulation in epilepsy: Implications for therapy. Clin Chim Acta 2015; 452:1-9. [PMID: 26506013 DOI: 10.1016/j.cca.2015.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
There is a need to develop innovative therapeutic strategies to counteract epilepsy, a common disabling neurological disorder. Despite the recent advent of additional antiepileptic drugs and respective surgery, the treatment of epilepsy remains a major challenge. The available therapies are largely based on symptoms, and these approaches do not affect the underlying disease processes and are also associated frequently with severe side effects. This is mainly because of the lack of well-defined targets in epilepsy. The discovery that inflammatory mediators significantly contribute to the onset and recurrence of seizures in experimental seizure models, as well as the presence of inflammatory molecules in human epileptogenic tissue, highlights the possibility of targeting specific inflammation related pathways to control seizures that are otherwise resistant to the available AEDs. Emerging studies suggest that miRNAs have a significant role in regulating inflammatory pathways shown to be involved in epilepsy. These miRNAs can possibly be used as novel therapeutic targets in the treatment of epilepsy as well as serve as diagnostic biomarkers of epileptogenesis. This review highlights the immunological features underlying the pathogenesis of epileptic seizures and the possible miRNA mediated approaches for drug resistant epilepsies that modulate the immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Arpna Srivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
37
|
Alsharafi WA, Xiao B, Abuhamed MM, Luo Z. miRNAs: biological and clinical determinants in epilepsy. Front Mol Neurosci 2015; 8:59. [PMID: 26528124 PMCID: PMC4602137 DOI: 10.3389/fnmol.2015.00059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Recently, microRNAs (miRNAs) are reported to be crucial modulators in the pathogenesis and potential treatment of epilepsies. To date, several miRNAs have been demonstrated to be significantly expressed in the epileptic tissues and strongly associated with the development of epilepsy. Specifically, miRNAs regulate synaptic strength, inflammation, neuronal and glial function, ion channels, and apoptosis. Furthermore, peripheral blood miRNAs can also be utilized as diagnostic biomarkers to assess disease risk and treatment responses. Here, we will summarize the recent available literature regarding the role of miRNAs in the pathogenesis and treatment of epilepsy. Moreover, we will provide brief insight into the potential of miRNA as diagnostic biomarkers for early diagnosis and prognosis of epilepsy.
Collapse
Affiliation(s)
- Walid A Alsharafi
- Department of Neurology, Xiangya Hospital, Central South University Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University Changsha, China
| | | | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University Changsha, China
| |
Collapse
|
38
|
Abstract
Epigenetic processes in the brain involve the transfer of information arising from short-lived cellular signals and changes in neuronal activity into lasting effects on gene expression. Key molecular mediators of epigenetics include methylation of DNA, histone modifications, and noncoding RNAs. Emerging findings in animal models and human brain tissue reveal that epilepsy and epileptogenesis are associated with changes to each of these contributors to the epigenome. Understanding and influencing the molecular mechanisms controlling epigenetic change could open new avenues for treatment. DNA methylation, particularly hypermethylation, has been found to increase within gene body regions and interference with DNA methylation in epilepsy can change gene expression profiles and influence epileptogenesis. Posttranscriptional modification of histones, including transient as well as sustained changes to phosphorylation and acetylation, have been reported, which appear to influence gene expression. Finally, roles have emerged for noncoding RNAs in brain excitability and seizure thresholds, including microRNA and long noncoding RNA. Together, research supports strong effects of epigenetics influencing gene expression in epilepsy, suggesting future therapeutic approaches to manipulate epigenetic processes to treat or prevent epilepsy.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
39
|
Huchtemann T, Körtvélyessy P, Feistner H, Heinze HJ, Bittner D. Progranulin levels in status epilepticus as a marker of neuronal recovery and neuroprotection. Epilepsy Behav 2015. [PMID: 26211941 DOI: 10.1016/j.yebeh.2015.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Recently, a mouse model showed that progranulin, a mediator in neuroinflammation and a neuronal growth factor, was elevated in the hippocampus after status epilepticus (SE). This elevated level might mirror compensating neuronal mechanisms after SE. Studies concerning neuronal recovery and neuroprotective mechanisms after SE in humans are scarce, so we tested for progranulinin the cerebrospinal fluid (CSF) after various types of SE. METHOD We performed a retrospective analysis of progranulin levels in CSF in patients (n = 24) who underwent lumbar puncture as part of diagnostic workup after having SE and in patients after having one single tonic-clonic seizure who comprised the control group (n = 8). RESULTS In our group with SE, progranulin levels in CSF were not significantly elevated compared to our control group. Furthermore, there was no correlation between progranulin levels and the time interval between lumbar puncture and SE. Additionally, in cases of higher CSF progranulin levels, we found no impact on the clinical outcome after SE. CONCLUSION Although our cohort is heterogeneous and not fully sufficient, we conclude that progranulin in CSF is not elevated after SE in our cohort. Therefore, our results do not suggest a change in cerebral progranulin metabolism as a possible neuroregenerative or neuroprotective mechanism in humans after SE in acute and subacute phases. A larger cohort study is needed to further strengthen this result. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- T Huchtemann
- Department of Neurology, University Hospital Magdeburg, Germany
| | - P Körtvélyessy
- Department of Neurology, University Hospital Magdeburg, Germany.
| | - H Feistner
- Department of Neurology, University Hospital Magdeburg, Germany
| | - H J Heinze
- Department of Neurology, University Hospital Magdeburg, Germany; Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - D Bittner
- Department of Neurology, University Hospital Magdeburg, Germany
| |
Collapse
|
40
|
Wang X, Jin J, Chen R. Combination drug therapy for the treatment of status epilepticus. Expert Rev Neurother 2015; 15:639-54. [DOI: 10.1586/14737175.2015.1045881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Prabowo AS, van Scheppingen J, Iyer AM, Anink JJ, Spliet WGM, van Rijen PC, Schouten-van Meeteren AYN, Aronica E. Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas. J Neuroinflammation 2015; 12:97. [PMID: 25986346 PMCID: PMC4446114 DOI: 10.1186/s12974-015-0315-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
PURPOSE miR21, miR146, and miR155 represent a trio of microRNAs which has been shown to play a key role in the regulation of immune and inflammatory responses. In the present study, we investigated the differential expression and clinical significance of these three miRNAs in glioneuronal tumors (gangliogliomas, GGs) which are characterized by prominent activation of the innate immune response. METHODS The expression levels of miR21, miR146, and miR155 were evaluated using Taqman PCR in 34 GGs, including 15 cases with sufficient amount of perilesional cortex. Their expression was correlated with the tumor features and the clinical history of epilepsy. In addition, in situ hybridization was used to evaluate their cellular distribution in both tumor and peritumoral cortex. RESULTS Increased expression of miR146a was observed in both tumor and peritumoral cortex compared to control samples. miR146a was detected in both neuronal and astroglial cells. Tumor and peritumoral miR146a expression was negatively correlated with frequency of seizures and the density of activated microglial cells. Neuronal and astroglial expression was observed for both miR21 and miR155 with increased expression of miR21 within the tumor and miR155 in the peritumoral region. Negative correlations were observed between the miRNA levels and the expression of putative targets within the astroglial component of the tumor. CONCLUSION We report a differential regulation of three miRNAs, known to be related to inflammation, in both tumor and peritumoral cortex of patients with GG. Moreover, our findings suggest a functional relationship between miR146a expression and epilepsy, either directly in epileptogenesis or as modulation of seizure activity.
Collapse
Affiliation(s)
- A S Prabowo
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - J van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A M Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - J J Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - W G M Spliet
- Department of Pathology, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - P C van Rijen
- Department of Neurosurgery, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - A Y N Schouten-van Meeteren
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands. .,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Bajan S, Hutvagner G. Regulation of miRNA processing and miRNA mediated gene repression in cancer. Microrna 2015; 3:10-7. [PMID: 25069508 PMCID: PMC4260356 DOI: 10.2174/2211536602666140110234046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/13/2013] [Accepted: 12/20/2013] [Indexed: 12/19/2022]
Abstract
The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers.
Collapse
Affiliation(s)
| | - Gyorgy Hutvagner
- Correspondence: Faculty of Engineering and Information Technology, Centre of Health Technology, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
43
|
Abstract
Epilepsy is a common, serious neurological disease characterized by recurring seizures. Such abnormal, excessive synchronous firing of neurons arises in part because of imbalances in excitation and inhibition in the brain. The process of epileptogenesis, during which the normal brain is transformed after injury to one capable of generating spontaneous seizures, is associated with large-scale changes in gene expression. These contribute to the remodelling of brain networks that permanently alters excitability. Components of the microRNA (miRNA) biogenesis pathway have been found to be altered in brain tissue from epilepsy patients and experimental epileptogenic insults result in select changes to miRNAs regulating neuronal microstructure, cell death, inflammation, and ion channels. Targeting key miRNAs has been shown to alter brain excitability and suppress or exacerbate seizures, indicating potential for miRNA-based therapeutics in epilepsy. Altered miRNA profiles in biofluids may be potentially useful biomarkers of epileptogenesis. In summary, miRNAs represent an important layer of gene expression control in epilepsy with therapeutic and biomarker potential.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW This review provides a synthesis of recent profiling studies investigating microRNA (miRNA) changes in experimental and human epilepsy, and outlines mechanistic, therapeutic and diagnostic potentials of this research area for clinical practice. RECENT FINDINGS A series of studies in experimental and human epilepsy have undertaken large-scale expression profiling of miRNAs, key regulatory molecules in cells controlling protein levels. Levels of over 100 different miRNAs were found to either increase or decrease in the hippocampus, of which more than 20 were identified in more than one study, including higher levels of miR-23a, miR-34a, miR-132 and miR-146a. Altered levels of enzymes involved in miRNA biogenesis and function, including Dicer and Argonaute 2, have also been found in epileptic brain tissue. Functional studies using oligonucleotide-based inhibitors support roles for miRNAs in the control of cell death, synaptic structure, inflammation and the immune response. Finally, data show brain injuries that precipitate epilepsy generate unique miRNA profiles in biofluids. SUMMARY miRNA represents a potentially important mechanism controlling protein levels in epilepsy. As such, miRNAs might be targeted to prevent or disrupt epilepsy as well as serve as diagnostic biomarkers of epileptogenesis.
Collapse
|
45
|
Bicker S, Lackinger M, Weiß K, Schratt G. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 2014; 71:3987-4005. [PMID: 25008044 PMCID: PMC11113804 DOI: 10.1007/s00018-014-1671-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 01/19/2023]
Abstract
Dendritic mRNA transport and local translation in the postsynaptic compartment play an important role in synaptic plasticity, learning and memory. Local protein synthesis at the synapse has to be precisely orchestrated by a plethora of factors including RNA binding proteins as well as microRNAs, an extensive class of small non-coding RNAs. By binding to complementary sequences in target mRNAs, microRNAs fine-tune protein synthesis and thereby represent critical regulators of gene expression at the post-transcriptional level. Research over the last years identified an entire network of dendritic microRNAs that fulfills an essential role in synapse development and physiology. Recent studies provide evidence that these small regulatory molecules are highly regulated themselves, at the level of expression as well as function. The importance of microRNAs for correct function of the nervous system is reflected by an increasing number of studies linking dysregulation of microRNA pathways to neurological disorders. By focusing on three extensively studied examples (miR-132, miR-134, miR-138), this review will attempt to illustrate the complex regulatory roles of dendritic microRNAs at the synapse and their implications for pathological conditions.
Collapse
Affiliation(s)
- Silvia Bicker
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Martin Lackinger
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Kerstin Weiß
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gerhard Schratt
- Biochemical-Pharmacological Center (BPC) Marburg, Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
46
|
Soreq H. Novel roles of non-coding brain RNAs in health and disease. Front Mol Neurosci 2014; 7:55. [PMID: 25018693 PMCID: PMC4072071 DOI: 10.3389/fnmol.2014.00055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hermona Soreq
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Sciences, The Alexander Silberman Institute for Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
47
|
Hocker S, Tatum WO, LaRoche S, Freeman WD. Refractory and super-refractory status epilepticus--an update. Curr Neurol Neurosci Rep 2014; 14:452. [PMID: 24760477 DOI: 10.1007/s11910-014-0452-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Status epilepticus is a medical emergency with a high mortality. Early recognition and initiation of treatment leads to a better response and may improve outcomes. Refractory status epilepticus is defined as recurrent seizure activity despite two appropriately selected and dosed antiepileptic drugs including a benzodiazepine. The term "super-refractory status epilepticus" was introduced during the London-Innsbruck Colloquium on status epilepticus in 2011 and refers to status epilepticus that continues or recurs 24 h or more after the initiation of treatment with anesthetic antiepileptic drugs. This includes cases in which seizure control is attained after induction of anesthesia but recurs on weaning the patient off the anesthetic agent. This article reviews the approach to refractory status epilepticus and super-refractory status epilepticus, including management as well as common pathophysiological causes of these entities.
Collapse
Affiliation(s)
- Sara Hocker
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA,
| | | | | | | |
Collapse
|
48
|
Abstract
In humans, genomic DNA is organized in 23 chromosome pairs coding for roughly 25,000 genes. Not all of them are active at all times. During development, a broad range of different cell types needs to be generated in a highly ordered and reproducible manner, requiring selective gene expression programs. Epigenetics can be regarded as the information management system that is able to index or bookmark distinct regions in our genome to regulate the readout of DNA. It further comprises the molecular memory of any given cell, allowing it to store information of previously experienced external (e.g., environmental) or internal (e.g., developmental) stimuli, to learn from this experience and to respond. The underlying epigenetic mechanisms can be synergistic, antagonistic, or mutually exclusive and their large variety combined with the variability and interdependence is thought to provide the molecular basis for any phenotypic variation in physiological and pathological conditions. Thus, widespread reconfiguration of the epigenome is not only a key feature of neurodevelopment, brain maturation, and adult brain function but also disease.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage, Erlangen, Germany.
| |
Collapse
|
49
|
Deregulated microRNA expression in biospecimens from patients diagnosed with schizophrenia and bipolar disorder as a disease biomarker. Transl Neurosci 2014. [DOI: 10.2478/s13380-014-0224-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractThe biological markers for schizophrenia (SZ) and bipolar disorder (BD) would represent a precious tool in evaluating the risk for the development of these common neuropsychiatric diseases and, possibly, in the prevention of either disease episodes and/or treatment efficiency monitoring. Since both SZ and BD are diseases with a significant genetic component, the research over the last decades has focused on the genes with altered function in the central nervous system (CNS) of individuals suffering from these illnesses. Recently, however, small non-coding RNA molecules (microRNAs, miRNAs, miRs) were shown to regulate the expression of human CNS genes involved in cell processes and functions negatively affected in neuropsychiatric disorders, including synaptic development and maturation, learning and memory. Differentially expressed sets of miRNAs have been reported in the tissues of SZ and BD patients in comparison to controls suggesting the emergence of a novel class of potential biomarkers. Here we review the reports on the changes in miRNA expression in postmortem brain tissue and peripheral blood in SZ and BD. We also evaluate the potential of miRNA packaged in exosomes, signaling vesicles released by neurons and glia, to contribute to the disaggregation of the molecular machinery underlying mental disorders and provide clinically useful biomarkers.
Collapse
|