1
|
Ahmad SR, Zeyaullah M, Khan MS, AlShahrani AM, Altijani AAG, Ali H, Dawria A, Mohieldin A, Alam MS, Mohamed AOA. Pharmacogenomics for neurodegenerative disorders - a focused review. Front Pharmacol 2024; 15:1478964. [PMID: 39759457 PMCID: PMC11695131 DOI: 10.3389/fphar.2024.1478964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 01/07/2025] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are characterized by the progressive degeneration of neuronal structure and function, leading to severe cognitive and motor impairments. These conditions present significant challenges to healthcare systems, and traditional treatments often fail to account for genetic variability among patients, resulting in inconsistent therapeutic outcomes. Pharmacogenomics aims to tailor medical treatments based on an individual's genetic profile, thereby improving therapeutic efficacy and reducing adverse effects. This focused review explores the genetic factors influencing drug responses in neurodegenerative diseases and the potential of pharmacogenomics to revolutionize their treatment. Key genetic markers, such as the APOE ε4 allele in AD and the CYP2D6 polymorphisms in PD, are highlighted for their roles in modulating drug efficacy. Additionally, advancements in pharmacogenomic tools, including genome-wide association studies (GWAS), next-generation sequencing (NGS), and CRISPR-Cas9, are discussed for their contributions to personalized medicine. The application of pharmacogenomics in clinical practice and its prospects, including ethical and data integration challenges, are also examined.
Collapse
Affiliation(s)
- S. Rehan Ahmad
- Hiralal Mazumdar Memorial College for Women, West Bengal State University, Kolkata, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdelrhman A. Galaleldin Altijani
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Haroon Ali
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Adam Dawria
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Ali Mohieldin
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mohammad Shane Alam
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Awad Osman Abdalla Mohamed
- Department of Anaesthesia Technology, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia
| |
Collapse
|
2
|
Fatima S, Shukla S, Nazir A. C.el Phosphatome: A Catalogue of Actual and Pseudo Phosphatases Based on In-Silico Studies in Caenorhabditis elegans. Protein J 2018; 37:572-580. [PMID: 30242660 DOI: 10.1007/s10930-018-9794-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphatases are well known to carry out important functions via counter activity of kinases and they serve as mechanism for dephosphorylating the monophosphate esters from the phosphorylated serine, threonine, tyrosine and histidine residues. The biological relevance of phosphatases could be explored further employing newer technologies and models. Caenorhabditis elegans is a powerful genetic model system that bears significant homology with humans, hence providing with a precious tool towards studying important signalling pathways. We carried out the present study to catalogue the C. elegans protein phosphatome, referred here as 'C.el phosphatome' and annotated the corresponding dataset. We further classified these phosphatases based on presence of catalytic conserved motif; GDxHG, GDxVDRG, GNHE, RxxD, DGxxG, DG, GxxDN for Ser/Thr phosphatases, HC(x)5 R for tyrosine phosphatases and DxDxT/V for aspartate based phosphatases. Bioinformatics tool DAVID was employed to decipher the biological relevance of phosphatases. Our findings show Ser/Thr phosphatases (114), Tyr phosphatases (121) and Asp phosphatases (0) in C. elegans genome based on the hallmark sequence identification. Amongst them, 34 and 57 Ser/Thr and Tyr phosphatases respectively contain the catalytic motif. This catalogue offers a precious tool for further studies towards understanding important biological processes and disease conditions.
Collapse
Affiliation(s)
- Soobiya Fatima
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shikha Shukla
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute (CSIR-CDRI) Campus, Lucknow, India.
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|