1
|
Utama GL, Sahab NRM, Nurmilah S, Yarlina VP, Subroto E, Balia RL. Unveiling microbial dynamics in terasi spontaneous fermentation: Insights into glutamate and GABA production. Curr Res Food Sci 2024; 10:100950. [PMID: 39760015 PMCID: PMC11699049 DOI: 10.1016/j.crfs.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Terasi, a traditional Indonesian seafood product made from shrimp, undergoes fermentation facilitated by a consortium of microorganisms, including Lactic Acid Bacteria (LAB) and yeast, which contribute to its distinctive umami flavor. This study investigates the microbial dynamics and production of key metabolites, including γ-aminobutyric acid (GABA), during terasi fermentation. Total Plate Count (TPC) and High-Performance Liquid Chromatography (HPLC) were used to monitor changes in glutamate and GABA levels, with glutamate increasing from 105.18 mg/mL on day 3-139.19 mg/mL on day 14, and GABA rising from 90.49 mg/mL to 106.98 mg/mL over the same period. Metagenomic analysis using high-throughput sequencing of bacterial 16 S rRNA identified Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidota as dominant phyla. While LAB populations remained relatively stable, yeast became detectable from day 4. Notably, core bacterial genera such as Vibrio, Macrococcus, Staphylococcus, Exiguobacterium, Jeotgalicoccus, Prevotella, Salinicoccus, Bacillus, Pseudarthrobacter, and Vagococcus were highly abundant and played significant roles in GABA production, likely due to their glutamate decarboxylase activity. These findings reveal a clear correlation between microbial succession and metabolite production, offering valuable insights into the fermentation process of terasi. This study enhances the understanding of traditional food fermentation and presents opportunities to optimize beneficial compounds in terasi products.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Centre for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Siti Nurmilah
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Vira Putri Yarlina
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Edy Subroto
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Roostita L. Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
2
|
Manzoor Y, Aouida M, Ramadoss R, Moovarkumudalvan B, Ahmed N, Sulaiman AA, Mohanty A, Ali R, Mifsud B, Ramotar D. Loss of the yeast transporter Agp2 upregulates the pleiotropic drug-resistant pump Pdr5 and confers resistance to the protein synthesis inhibitor cycloheximide. PLoS One 2024; 19:e0303747. [PMID: 38776347 PMCID: PMC11111045 DOI: 10.1371/journal.pone.0303747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
The transmembrane protein Agp2, initially shown as a transporter of L-carnitine, mediates the high-affinity transport of polyamines and the anticancer drug bleomycin-A5. Cells lacking Agp2 are hyper-resistant to polyamine and bleomycin-A5. In these earlier studies, we showed that the protein synthesis inhibitor cycloheximide blocked the uptake of bleomycin-A5 into the cells suggesting that the drug uptake system may require de novo synthesis. However, our recent findings demonstrated that cycloheximide, instead, induced rapid degradation of Agp2, and in the absence of Agp2 cells are resistant to cycloheximide. These observations raised the possibility that the degradation of Agp2 may allow the cell to alter its drug resistance network to combat the toxic effects of cycloheximide. In this study, we show that membrane extracts from agp2Δ mutants accentuated several proteins that were differentially expressed in comparison to the parent. Mass spectrometry analysis of the membrane extracts uncovered the pleiotropic drug efflux pump, Pdr5, involved in the efflux of cycloheximide, as a key protein upregulated in the agp2Δ mutant. Moreover, a global gene expression analysis revealed that 322 genes were differentially affected in the agp2Δ mutant versus the parent, including the prominent PDR5 gene and genes required for mitochondrial function. We further show that Agp2 is associated with the upstream region of the PDR5 gene, leading to the hypothesis that cycloheximide resistance displayed by the agp2Δ mutant is due to the derepression of the PDR5 gene.
Collapse
Affiliation(s)
- Yusra Manzoor
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| | - Balasubramanian Moovarkumudalvan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Nisar Ahmed
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Ashima Mohanty
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Borbala Mifsud
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
3
|
Zhou L, Xu R. Invertebrate genetic models of amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1328578. [PMID: 38500677 PMCID: PMC10944931 DOI: 10.3389/fnmol.2024.1328578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by the progressive death of motor neurons in the cerebral cortex, brain stem, and spinal cord. The exact mechanisms underlying the pathogenesis of ALS remain unclear. The current consensus regarding the pathogenesis of ALS suggests that the interaction between genetic susceptibility and harmful environmental factors is a promising cause of ALS onset. The investigation of putative harmful environmental factors has been the subject of several ongoing studies, but the use of transgenic animal models to study ALS has provided valuable information on the onset of ALS. Here, we review the current common invertebrate genetic models used to study the pathology, pathophysiology, and pathogenesis of ALS. The considerations of the usage, advantages, disadvantages, costs, and availability of each invertebrate model will also be discussed.
Collapse
Affiliation(s)
- LiJun Zhou
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| | - RenShi Xu
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Mohanty A, Alhaj Sulaiman A, Moovarkumudalvan B, Ali R, Aouida M, Ramotar D. The Yeast Permease Agp2 Senses Cycloheximide and Undergoes Degradation That Requires the Small Protein Brp1-Cellular Fate of Agp2 in Response to Cycloheximide. Int J Mol Sci 2023; 24:ijms24086975. [PMID: 37108141 PMCID: PMC10138708 DOI: 10.3390/ijms24086975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The Saccharomyces cerevisiae Agp2 is a plasma membrane protein initially reported to be an uptake transporter for L-carnitine. Agp2 was later rediscovered, together with three additional proteins, Sky1, Ptk2, and Brp1, to be involved in the uptake of the polyamine analogue bleomycin-A5, an anticancer drug. Mutants lacking either Agp2, Sky1, Ptk2, or Brp1 are extremely resistant to polyamines and bleomycin-A5, suggesting that these four proteins act in the same transport pathway. We previously demonstrated that pretreating cells with the protein synthesis inhibitor cycloheximide (CHX) blocked the uptake of fluorescently labelled bleomycin (F-BLM), raising the possibility that CHX could either compete for F-BLM uptake or alter the transport function of Agp2. Herein, we showed that the agp2Δ mutant displayed striking resistance to CHX as compared to the parent, suggesting that Agp2 is required to mediate the physiological effect of CHX. We examined the fate of Agp2 as a GFP tag protein in response to CHX and observed that the drug triggered the disappearance of Agp2 in a concentration- and time-dependent manner. Immunoprecipitation analysis revealed that Agp2-GFP exists in higher molecular weight forms that were ubiquitinylated, which rapidly disappeared within 10 min of treatment with CHX. CHX did not trigger any significant loss of Agp2-GFP in the absence of the Brp1 protein; however, the role of Brp1 in this process remains elusive. We propose that Agp2 is degraded upon sensing CHX to downregulate further uptake of the drug and discuss the potential function of Brp1 in the degradation process.
Collapse
Affiliation(s)
- Ashima Mohanty
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Balasubramanian Moovarkumudalvan
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
5
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
6
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
7
|
Sangkaew A, Kojornna T, Tanahashi R, Takagi H, Yompakdee C. A novel yeast-based screening system for potential compounds that can alleviate human α-synuclein toxicity. J Appl Microbiol 2021; 132:1409-1421. [PMID: 34448525 PMCID: PMC9291589 DOI: 10.1111/jam.15256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/10/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Aims This study aimed to establish a yeast‐based screening system for potential compounds that can alleviate the toxicity of α‐synuclein (α‐syn), a neuropathological hallmark of Parkinson’s disease, either inhibition of α‐syn aggregation or promotion of ubiquitin‐mediated degradation of α‐syn. Methods and Results A powerful yeast‐based screening assay using the rsp5A401E‐mutant strain, which is hypersensitive to α‐syn aggregation, was established by two‐step gene replacement and further overexpressed the GFP‐fused α‐syn in the drug‐sensitive yeast strain with a galactose‐inducible multicopy plasmid. The rsp5A401E‐mutant strain treated with baicalein, a known α‐syn aggregation inhibitor, showed better α‐syn toxicity alleviation than the same background wild type strain as accessed by comparison on the reduction kinetics of viable dye resazurin fluorometrically (λex540/λem590 nm). The rsp5A401E‐mutant yeast‐based assay system showed high sensitivity as it could detect as low as 3.13 µmol l−1 baicalein, the concentration that lower than previously report detected by the in vitro assay. Conclusions Our yeast‐based system has been effective for screening potential compounds that can alleviate α‐syn toxicity with high sensitivity and specificity. Significance and Impact of the Study Yeast‐based assay system can be used to discover novel neuroprotective drug candidates which may be either efficiently suppress‐α‐syn aggregation or enhance ubiquitin‐dependent degradation.
Collapse
Affiliation(s)
- Anyaporn Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanaporn Kojornna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ryoya Tanahashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 485] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
9
|
Monahan ZT, Rhoads SN, Yee DS, Shewmaker FP. Yeast Models of Prion-Like Proteins That Cause Amyotrophic Lateral Sclerosis Reveal Pathogenic Mechanisms. Front Mol Neurosci 2018; 11:453. [PMID: 30618605 PMCID: PMC6297178 DOI: 10.3389/fnmol.2018.00453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Many proteins involved in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS) are remarkably similar to proteins that form prions in the yeast Saccharomyces cerevisiae. These ALS-associated proteins are not orthologs of yeast prion proteins, but are similar in having long, intrinsically disordered domains that are rich in hydrophilic amino acids. These so-called prion-like domains are particularly aggregation-prone and are hypothesized to participate in the mislocalization and misfolding processes that occur in the motor neurons of ALS patients. Methods developed for characterizing yeast prions have been adapted to studying ALS-linked proteins containing prion-like domains. These yeast models have yielded major discoveries, including identification of new ALS genetic risk factors, new ALS-causing gene mutations and insights into how disease mutations enhance protein aggregation.
Collapse
Affiliation(s)
| | | | | | - Frank P. Shewmaker
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
10
|
Schneider KL, Nyström T, Widlund PO. Studying Spatial Protein Quality Control, Proteopathies, and Aging Using Different Model Misfolding Proteins in S. cerevisiae. Front Mol Neurosci 2018; 11:249. [PMID: 30083092 PMCID: PMC6064742 DOI: 10.3389/fnmol.2018.00249] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Protein quality control (PQC) is critical to maintain a functioning proteome. Misfolded or toxic proteins are either refolded or degraded by a system of temporal quality control and can also be sequestered into aggregates or inclusions by a system of spatial quality control. Breakdown of this concerted PQC network with age leads to an increased risk for the onset of disease, particularly neurological disease. Saccharomyces cerevisiae has been used extensively to elucidate PQC pathways and general evolutionary conservation of the PQC machinery has led to the development of several useful S. cerevisiae models of human neurological diseases. Key to both of these types of studies has been the development of several different model misfolding proteins, which are used to challenge and monitor the PQC machinery. In this review, we summarize and compare the model misfolding proteins that have been used to specifically study spatial PQC in S. cerevisiae, as well as the misfolding proteins that have been shown to be subject to spatial quality control in S. cerevisiae models of human neurological diseases.
Collapse
Affiliation(s)
- Kara L Schneider
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per O Widlund
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Seynnaeve D, Vecchio MD, Fruhmann G, Verelst J, Cools M, Beckers J, Mulvihill DP, Winderickx J, Franssens V. Recent Insights on Alzheimer's Disease Originating from Yeast Models. Int J Mol Sci 2018; 19:E1947. [PMID: 29970827 PMCID: PMC6073265 DOI: 10.3390/ijms19071947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
In this review article, yeast model-based research advances regarding the role of Amyloid-β (Aβ), Tau and frameshift Ubiquitin UBB+1 in Alzheimer’s disease (AD) are discussed. Despite having limitations with regard to intercellular and cognitive AD aspects, these models have clearly shown their added value as complementary models for the study of the molecular aspects of these proteins, including their interplay with AD-related cellular processes such as mitochondrial dysfunction and altered proteostasis. Moreover, these yeast models have also shown their importance in translational research, e.g., in compound screenings and for AD diagnostics development. In addition to well-established Saccharomyces cerevisiae models, new upcoming Schizosaccharomyces pombe, Candida glabrata and Kluyveromyces lactis yeast models for Aβ and Tau are briefly described. Finally, traditional and more innovative research methodologies, e.g., for studying protein oligomerization/aggregation, are highlighted.
Collapse
Affiliation(s)
- David Seynnaeve
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Mara Del Vecchio
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Gernot Fruhmann
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Joke Verelst
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Melody Cools
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Jimmy Beckers
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK.
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Vanessa Franssens
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Leibiger C, Deisel J, Aufschnaiter A, Ambros S, Tereshchenko M, Verheijen BM, Büttner S, Braun RJ. TDP-43 controls lysosomal pathways thereby determining its own clearance and cytotoxicity. Hum Mol Genet 2018; 27:1593-1607. [PMID: 29474575 DOI: 10.1093/hmg/ddy066] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/17/2018] [Indexed: 11/14/2022] Open
Abstract
TDP-43 is a nuclear RNA-binding protein whose cytoplasmic accumulation is the pathological hallmark of amyotrophic lateral sclerosis (ALS). For a better understanding of this devastating disorder at the molecular level, it is important to identify cellular pathways involved in the clearance of detrimental TDP-43. Using a yeast model system, we systematically analyzed to which extent TDP-43-triggered cytotoxicity is modulated by conserved lysosomal clearance pathways. We observed that the lysosomal fusion machinery and the endolysosomal pathway, which are crucial for proper lysosomal function, were pivotal for survival of cells exposed to TDP-43. Interestingly, TDP-43 itself interfered with these critical TDP-43 clearance pathways. In contrast, autophagy played a complex role in this process. It contributed to the degradation of TDP-43 in the absence of endolysosomal pathway activity, but its induction also enhanced cell death. Thus, TDP-43 interfered with lysosomal function and its own degradation via lysosomal pathways, and triggered lethal autophagy. We propose that these effects critically contribute to cellular dysfunction in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Christine Leibiger
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Jana Deisel
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| | | | - Stefanie Ambros
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Maria Tereshchenko
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands and
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Ralf J Braun
- Institute of Cell Biology, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
13
|
Manecka DL, Vanderperre B, Fon EA, Durcan TM. The Neuroprotective Role of Protein Quality Control in Halting the Development of Alpha-Synuclein Pathology. Front Mol Neurosci 2017; 10:311. [PMID: 29021741 PMCID: PMC5623686 DOI: 10.3389/fnmol.2017.00311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Synucleinopathies are a family of neurodegenerative disorders that comprises Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Each of these disorders is characterized by devastating motor, cognitive, and autonomic consequences. Current treatments for synucleinopathies are not curative and are limited to improvement of quality of life for affected individuals. Although the underlying causes of these diseases are unknown, a shared pathological hallmark is the presence of proteinaceous inclusions containing the α-synuclein (α-syn) protein in brain tissue. In the past few years, it has been proposed that these inclusions arise from the self-templated, prion-like spreading of misfolded and aggregated forms of α-syn throughout the brain, leading to neuronal dysfunction and death. In this review, we describe how impaired protein homeostasis is a prominent factor in the α-syn aggregation cascade, with alterations in protein quality control (PQC) pathways observed in the brains of patients. We discuss how PQC modulates α-syn accumulation, misfolding and aggregation primarily through chaperoning activity, proteasomal degradation, and lysosome-mediated degradation. Finally, we provide an overview of experimental data indicating that targeting PQC pathways is a promising avenue to explore in the design of novel neuroprotective approaches that could impede the spreading of α-syn pathology and thus provide a curative treatment for synucleinopathies.
Collapse
Affiliation(s)
| | | | | | - Thomas M. Durcan
- Neurodegenerative Diseases Group and iPSC-CRISPR Core Facility, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Marquez-Lona EM, Torres-Machorro AL, Gonzales FR, Pillus L, Patrick GN. Phosphorylation of the 19S regulatory particle ATPase subunit, Rpt6, modifies susceptibility to proteotoxic stress and protein aggregation. PLoS One 2017; 12:e0179893. [PMID: 28662109 PMCID: PMC5491056 DOI: 10.1371/journal.pone.0179893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved and tightly regulated biochemical pathway that degrades the majority of proteins in eukaryotic cells. Importantly, the UPS is responsible for counteracting altered protein homeostasis induced by a variety of proteotoxic stresses. We previously reported that Rpt6, the ATPase subunit of the 19S regulatory particle (RP) of the 26S proteasome, is phosphorylated in mammalian neurons at serine 120 in response to neuronal activity. Furthermore, we found that Rpt6 S120 phosphorylation, which regulates the activity and distribution of proteasomes in neurons, is relevant for proteasome-dependent synaptic remodeling and function. To better understand the role of proteasome phosphorylation, we have constructed models of altered Rpt6 phosphorylation in S. cerevisiae by introducing chromosomal point mutations that prevent or mimic phosphorylation at the conserved serine (S119). We find that mutants which prevent Rpt6 phosphorylation at this site (rpt6-S119A), had increased susceptibility to proteotoxic stress, displayed abnormal morphology and had reduced proteasome activity. Since impaired proteasome function has been linked to the aggregation of toxic proteins including the Huntington's disease (HD) related huntingtin (Htt) protein with expanded polyglutamine repeats, we evaluated the extent of Htt aggregation in our phospho-dead (rpt6-S119A) and phospho-mimetic (rpt6-S119D) mutants. We showed Htt103Q aggregate size to be significantly larger in rpt6-S119A mutants compared to wild-type or rpt6-S119D strains. Furthermore, we observed that phosphorylation of endogenous Rpt6 at S119 is increased in response to various stress conditions. Together, these data suggest that Rpt6 phosphorylation at S119 may play an important function in proteasome-dependent relief of proteotoxic stress that can be critical in protein aggregation pathologies.
Collapse
Affiliation(s)
- Esther Magdalena Marquez-Lona
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ana Lilia Torres-Machorro
- Section of Molecular Biology and UCSD Moores Cancer Center, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Frankie R. Gonzales
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Lorraine Pillus
- Section of Molecular Biology and UCSD Moores Cancer Center, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Gentry N. Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
15
|
Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci 2016; 73:2237-50. [PMID: 27048816 PMCID: PMC4887522 DOI: 10.1007/s00018-016-2197-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Abstract
In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented.
Collapse
Affiliation(s)
- Claudio Falcone
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
16
|
Chen X, Petranovic D. Role of frameshift ubiquitin B protein in Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:300-13. [DOI: 10.1002/wsbm.1340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/10/2016] [Accepted: 03/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Chen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering; Chalmers University of Technology; Göteborg Sweden
| | - Dina Petranovic
- Systems and Synthetic Biology, Department of Biology and Biological Engineering; Chalmers University of Technology; Göteborg Sweden
- Novo Nordisk Foundation Center for Biosustainability; Chalmers University of Technology; Göteborg Sweden
| |
Collapse
|
17
|
Shrestha A, Megeney LA. Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration. MICROBIAL CELL 2015; 2:458-465. [PMID: 28357271 PMCID: PMC5354604 DOI: 10.15698/mic2015.12.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. Disruption of proteostasis is now widely recognized as a key feature of aging related illness, specifically neurodegenerative disease. For example, Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis (ALS) each target and afflict distinct neuronal cell subtypes, yet this diverse array of human pathologies share the defining feature of aberrant protein aggregation within the affected cell population. Here, we review the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease. The humanized yeast model has proven to be an amenable platform to identify both, conserved proteostatic mechanisms across eukaryotic phyla and novel disease specific molecular dysfunction. Moreover, we discuss the intriguing concept that yeast specific proteins may be utilized as bona fide therapeutic agents, to correct proteostasis errors across various forms of neurodegeneration.
Collapse
Affiliation(s)
- Amit Shrestha
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Centre for Stem Cell Research, The Ottawa Hospital, Ottawa, Ontario, Canada. ; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Ontario, Canada
| | - Lynn A Megeney
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Centre for Stem Cell Research, The Ottawa Hospital, Ottawa, Ontario, Canada. ; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Ontario, Canada ; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Menezes R, Tenreiro S, Macedo D, Santos CN, Outeiro TF. From the baker to the bedside: yeast models of Parkinson's disease. MICROBIAL CELL 2015; 2:262-279. [PMID: 28357302 PMCID: PMC5349099 DOI: 10.15698/mic2015.08.219] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The baker’s yeast Saccharomyces cerevisiae has been extensively explored for our understanding of fundamental cell biology processes highly conserved in the eukaryotic kingdom. In this context, they have proven invaluable in the study of complex mechanisms such as those involved in a variety of human disorders. Here, we first provide a brief historical perspective on the emergence of yeast as an experimental model and on how the field evolved to exploit the potential of the model for tackling the intricacies of various human diseases. In particular, we focus on existing yeast models of the molecular underpinnings of Parkinson’s disease (PD), focusing primarily on the central role of protein quality control systems. Finally, we compile and discuss the major discoveries derived from these studies, highlighting their far-reaching impact on the elucidation of PD-associated mechanisms as well as in the identification of candidate therapeutic targets and compounds with therapeutic potential.
Collapse
Affiliation(s)
- Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal. ; Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Universidade Nova de Lisboa, Portugal
| | - Sandra Tenreiro
- Instituto de Medicina Molecular, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal. ; CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal
| | - Diana Macedo
- Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Universidade Nova de Lisboa, Portugal
| | - Cláudia N Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal. ; Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Universidade Nova de Lisboa, Portugal
| | - Tiago F Outeiro
- Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028, Portugal. ; CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal. ; Department of NeuroDegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, Göttingen 37073, Germany
| |
Collapse
|