1
|
Li TT, Guo XF, Zhao YJ, Cheng YH, Xin DQ, Song Y, Liu DX, Wang Z. Aberrant neuronal excitation promotes neuroinflammation in the primary motor cortex of ischemic stroke mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01518-6. [PMID: 40075146 DOI: 10.1038/s41401-025-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Current treatments for ischemic stroke aim to achieve rapid reperfusion with intravenous thrombolysis and/or endovascular thrombectomy, which have proven to attenuate disability. Despite the significant progress in reperfusion therapies, functional recovery remains inconsistent, primarily due to ongoing neuronal excitotoxicity and neuroinflammation. In this study we investigated the relationship between neuronal activity and neuroinflammation in an ischemic mouse model using chemogenetic techniques. MCAO cerebral ischemia model was established in mice; in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) was established in PC12 neurons. By measuring c-Fos expression, we showed that MCAO caused the activation of both excitatory and inhibitory neurons within the M1 primary motor cortex, which subsequently induced reactive activation of local microglia through the secretion of unique neuronal extracellular vesicles (EVs). Chemogenetic inhibition of abnormal neuronal activity in stroke-affected cortical neurons reversed microglia activation and reduced neuronal apoptosis. By analyzing the miRNAs in EVs from the ischemic M1 cortex, we found that miR-128-3p was significantly downregulated in ischemia-challenged neurons and their EVs, leading to neuronal injury and proinflammatory polarization of microglia. Intravenous injection of miR-128-3p mimics significantly improved neuronal survival, reduced neuroinflammation accompanied by better functional recovery after ischemic stroke. In summary, stroke-induced abnormal neuronal activity reduces miR-128-3p levels in ischemic neurons and EVs, leading to increased microglia activation and neuronal injury after a stroke. The study highlights that inhibiting abnormal neuronal activity or delivering miR-128-3p-enriched EVs as novel methods for stroke treatment.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Xiao-Fan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Yi-Jing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Ya-Hong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Dan-Qing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - De-Xiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji-nan, 250012, China.
| |
Collapse
|
2
|
Chudakova D, Kuzenkova L, Fisenko A, Savostyanov K. In Search of Spinal Muscular Atrophy Disease Modifiers. Int J Mol Sci 2024; 25:11210. [PMID: 39456991 PMCID: PMC11508272 DOI: 10.3390/ijms252011210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The 5q Spinal Muscular Atrophy (SMA) is a hereditary autosomal recessive disease caused by defects in the survival motor neuron (SMN1) gene encoding survival motor neuron (SMN) protein. Currently, it is the leading cause of infantile mortality worldwide. SMA is a progressive neurodegenerative disease with "continuum of clinical severity", which can be modulated by genetic and epigenetic factors known as disease modifiers (DMs). Individuals (even siblings) with the same defects in SMN1 gene might have strikingly different types of SMA, supposedly due to the impact of DMs. There are several therapeutic options for SMA, all of them focusing on the restoration of the SMN protein levels to normal. Determining DMs and the pathways in which they are involved might aid in enhancing existing curative approaches. Furthermore, DMs might become novel therapeutic targets or prognostic biomarkers of the disease. This narrative review provides a brief overview of the genetics and pathobiology of SMA, and its bona fide modifiers. We describe novel, emerging DMs, approaches and tools used to identify them, as well as their potential mechanisms of action and impact on disease severity. We also propose several disease-modifying molecular mechanisms which could provide a partial explanation of the staggering variability of SMA phenotypes.
Collapse
Affiliation(s)
| | | | | | - Kirill Savostyanov
- National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation, 119991 Moscow, Russia
| |
Collapse
|
3
|
Kompotis K, Mang GM, Hubbard J, Jimenez S, Emmenegger Y, Polysopoulos C, Hor CN, Wigger L, Hébert SS, Mongrain V, Franken P. Cortical miR-709 links glutamatergic signaling to NREM sleep EEG slow waves in an activity-dependent manner. Proc Natl Acad Sci U S A 2024; 121:e2220532121. [PMID: 38207077 PMCID: PMC10801902 DOI: 10.1073/pnas.2220532121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling.
Collapse
Affiliation(s)
- Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, ZurichCH-8057, Switzerland
| | - Géraldine M. Mang
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Jeffrey Hubbard
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sonia Jimenez
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Christos Polysopoulos
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, ZurichCH-8057, Switzerland
| | - Charlotte N. Hor
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Leonore Wigger
- Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sébastien S. Hébert
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Axe Neurosciences, Québec, QCG1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QCG1V 0A6, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QCH3T 1J4, Canada
- Centre de recherche, Centre hospitalier de l’Université de Montréal, Montréal, QCH2X 0A9, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QCH4J 1C5, Canada
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
4
|
Mousa NO, Abdellatif A, Fahmy N, El-Fawal H, Osman A. MicroRNAs as a Tool for Differential Diagnosis of Neuromuscular Disorders. Neuromolecular Med 2023; 25:603-615. [PMID: 37856057 PMCID: PMC10721695 DOI: 10.1007/s12017-023-08763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Neuromuscular disorders (NMD) are a class of progressive disorders that are characterized by wasting of the muscles. Some of the disorders like Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), congenital muscular dystrophies (CMDs), limb-girdle muscular dystrophies (LGMD), and mild spinal muscular atrophy (SMA) type III share several presenting clinical features, and hence, diagnosis is usually a challenging task. In this study, the diagnostic potential of some species of microRNAs (miRNAs) that are known to play roles in normal and pathological contexts of myocytes (myomiRs) were evaluated to assess their potential in differential diagnosis of NMDs. In this study, seventy-four patients with different neuromuscular disorders along with thirty age-matched healthy control subjects were enrolled. Peripheral blood samples were collected from enrolled subjects followed by miRNA extraction and reverse transcription followed by quantification of the circulating levels of the studied miRNAs (miR-499, miR-206, miR-208a, miR-223, miR-191, miR-103a-3p, miR-103a-5p), by real-time PCR and statistical analysis. The data indicated that miR-499 level showed high circulating levels in DMD patients as well as in patients with other related disorders such as BMD. However, the levels of miR-499 were much higher in DMD patients and it can be used to diagnose DMD. In addition, miR-206 can selectively differentiate between DMD and all other disorders. The results also revealed that miR-208a and miR-223 were significantly dysregulated in SMA patients, and miR-103a-3p could distinguish DMD from BMD. The expression levels of some miRNA species can be utilized in the process of differential diagnosis of NMDs and can serve as a diagnostic biomarker, and such findings will pave the way towards generating targeted therapies.
Collapse
Affiliation(s)
- Nahla O Mousa
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed Abdellatif
- Biology Department, School of Sciences and Engineering, The American University in Cairo, Cairo, 11835, Egypt.
| | - Nagia Fahmy
- Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
| | - Hassan El-Fawal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, Cairo, 11835, Egypt
| | - Ahmed Osman
- Biotechnology Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Borg Al Arab, 21934, Egypt.
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
5
|
Helmold BR, Pauss KE, Ozdinler PH. TDP-43 protein interactome informs about perturbed canonical pathways and may help develop personalized medicine approaches for patients with TDP-43 pathology. Drug Discov Today 2023; 28:103769. [PMID: 37714405 PMCID: PMC10872580 DOI: 10.1016/j.drudis.2023.103769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Transactive response DNA binding protein of 43 kDa (TDP-43) pathology is a common proteinopathy observed among a broad spectrum of patients with neurodegenerative disease, regardless of the mutation. This suggests that protein-protein interactions of TDP-43 with other proteins may in part be responsible for the pathology. To gain better insights, we investigated TDP-43-binding proteins in each domain and correlated these interactions with canonical pathways. These investigations revealed key cellular events that are involved and are important at each domain and suggested previously identified compounds to modulate key aspects of these canonical pathways. Our approach proposes that personalized medicine approaches, which focus on perturbed cellular mechanisms would be feasible in the near future.
Collapse
Affiliation(s)
- Benjamin R Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Kate E Pauss
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA; Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60611, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Bhattacharyya P, Biswas A, Biswas SC. Brain-enriched miR-128: Reduced in exosomes from Parkinson's patient plasma, improves synaptic integrity, and prevents 6-OHDA mediated neuronal apoptosis. Front Cell Neurosci 2023; 16:1037903. [PMID: 36713778 PMCID: PMC9879011 DOI: 10.3389/fncel.2022.1037903] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the death of mid-brain dopaminergic neurons. Unfortunately, no effective cure or diagnostic biomarkers for PD are available yet. To address this, the present study focuses on brain-enriched small non-coding regulatory RNAs called microRNAs (miRNAs) that are released into the circulation packaged inside small extracellular vesicles called exosomes. We collected blood samples from PD patients and isolated exosomes from the plasma. qPCR-based detection revealed a particular neuron-enriched miR-128 to be significantly decreased in the patient-derived exosomes. Interestingly, a concomitant decreased expression of miR-128 was observed in the cellular models of PD. Fluorescent live cell imaging and flow-cytometry revealed that over-expression of miR-128 can prevent 6-OHDA-mediated mitochondrial superoxide production and induction of neuronal death respectively. This neuroprotective effect was found to be induced by miR-128-mediated inhibition of FoxO3a activation, a transcription factor involved in apoptosis. miR-128 over-expression also resulted in down-regulation of pro-apoptotic FoxO3a targets- FasL and PUMA, at both transcript and protein levels. Further downstream, miR-128 over-expression inhibited activation of caspases-8, -9 and -3, preventing both the intrinsic and extrinsic pathways of apoptosis. Additionally, over expression of miR-128 prevented down-regulation of synaptic proteins- Synaptophysin and PSD-95 and attenuated neurite shortening, thereby maintaining overall neuronal integrity. Thus, our study depicts the intracellular role of miR-128 in neuronal apoptosis and neurodegeneration and its implications as a biomarker being detectable in the circulating exosomes of PD patient blood. Thus, characterization of such exosomal brain-enriched miRNAs hold promise for effective detection and diagnosis of PD.
Collapse
Affiliation(s)
- Pallabi Bhattacharyya
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Biswas
- Department of Neurology, Bangur Institute of Neurosciences, Kolkata, India
| | - Subhas C. Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India,*Correspondence: Subhas C. Biswas, ;
| |
Collapse
|
7
|
Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. J Pers Med 2022; 12:jpm12050770. [PMID: 35629192 PMCID: PMC9143965 DOI: 10.3390/jpm12050770] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are representative neurodegenerative diseases (NDs) characterized by degeneration of selective neurons, as well as the lack of effective biomarkers and therapeutic treatments. In the last decade, microRNAs (miRNAs) have gained considerable interest in diagnostics and therapy of NDs, owing to their aberrant expression and their ability to target multiple molecules and pathways. Here, we provide an overview of dysregulated miRNAs in fluids (blood or cerebrospinal fluid) and nervous tissue of AD, PD, and ALS patients. By emphasizing those that are commonly dysregulated in these NDs, we highlight their potential role as biomarkers or therapeutical targets and describe the use of antisense oligonucleotides as miRNA therapies.
Collapse
|
8
|
Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging Potential of Exosomal Non-coding RNA in Parkinson’s Disease: A Review. Front Aging Neurosci 2022; 14:819836. [PMID: 35360206 PMCID: PMC8960858 DOI: 10.3389/fnagi.2022.819836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles that are released by cells and circulate freely in body fluids. Under physiological and pathological conditions, they serve as cargo for various biological substances such as nucleotides (DNA, RNA, ncRNA), lipids, and proteins. Recently, exosomes have been revealed to have an important role in the pathophysiology of several neurodegenerative illnesses, including Parkinson’s disease (PD). When secreted from damaged neurons, these exosomes are enriched in non-coding RNAs (e.g., miRNAs, lncRNAs, and circRNAs) and display wide distribution characteristics in the brain and periphery, bridging the gap between normal neuronal function and disease pathology. However, the current status of ncRNAs carried in exosomes regulating neuroprotection and PD pathogenesis lacks a systematic summary. Therefore, this review discussed the significance of ncRNAs exosomes in maintaining the normal neuron function and their pathogenic role in PD progression. Additionally, we have emphasized the importance of ncRNAs exosomes as potential non-invasive diagnostic and screening agents for the early detection of PD. Moreover, bioengineered exosomes are proposed to be used as drug carriers for targeted delivery of RNA interference molecules across the blood-brain barrier without immune system interference. Overall, this review highlighted the diverse characteristics of ncRNA exosomes, which may aid researchers in characterizing future exosome-based biomarkers for early PD diagnosis and tailored PD medicines.
Collapse
Affiliation(s)
- Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Madiha Rasheed
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Junhan Liang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chaolei Wang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Lin Feng,
| | - Zixuan Chen
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Zixuan Chen,
| |
Collapse
|
9
|
Overexpression of miR-124 in Motor Neurons Plays a Key Role in ALS Pathological Processes. Int J Mol Sci 2021; 22:ijms22116128. [PMID: 34200161 PMCID: PMC8201298 DOI: 10.3390/ijms22116128] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
miRNA(miR)-124 is an important regulator of neurogenesis, but its upregulation in SOD1G93A motor neurons (mSOD1 MNs) was shown to associate with neurodegeneration and microglia activation. We used pre-miR-124 in wild-type (WT) MNs and anti-miR-124 in mSOD1 MNs to characterize the miR-124 pathological role. miR-124 overexpression in WT MNs produced a miRNA profile like that of mSOD1 MNs (high miR-125b; low miR-146a and miR-21), and similarly led to early apoptosis. Alterations in mSOD1 MNs were abrogated with anti-miR-124 and changes in their miRNAs mostly recapitulated by their secretome. Normalization of miR-124 levels in mSOD1 MNs prevented the dysregulation of neurite network, mitochondria dynamics, axonal transport, and synaptic signaling. Same alterations were observed in WT MNs after pre-miR-124 transfection. Secretome from mSOD1 MNs triggered spinal microglia activation, which was unno-ticed with that from anti-miR-124-modulated cells. Secretome from such modulated MNs, when added to SC organotypic cultures from mSOD1 mice in the early symptomatic stage, also coun-teracted the pathology associated to GFAP decrease, PSD-95 and CX3CL1-CX3CR1 signaling im-pairment, neuro-immune homeostatic imbalance, and enhanced miR-124 expression levels. Data suggest that miR-124 is implicated in MN degeneration and paracrine-mediated pathogenicity. We propose miR-124 as a new therapeutic target and a promising ALS biomarker in patient sub-populations.
Collapse
|
10
|
Chen TH. Circulating microRNAs as potential biomarkers and therapeutic targets in spinal muscular atrophy. Ther Adv Neurol Disord 2020; 13:1756286420979954. [PMID: 33488772 PMCID: PMC7768327 DOI: 10.1177/1756286420979954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterized by the selective loss of particular groups of motor neurons (MNs) in the anterior horn of the spinal cord with progressive muscle wasting. SMA is caused by a deficiency of the survival motor neuron (SMN) protein due to a homozygous deletion or mutation of the SMN1 gene. However, the molecular mechanisms whereby the SMN complex regulates MN functions are not fully elucidated. Emerging studies on SMA pathogenesis have turned the attention of researchers to RNA metabolism, given that increasingly identified SMN-associated modifiers are involved in both coding and non-coding RNA (ncRNA) processing. Among various ncRNAs, microRNAs (miRNAs) are the most studied in terms of regulation of posttranscriptional gene expression. Recently, the discovery that miRNAs are critical to MN function and survival led to the study of dysregulated miRNAs in SMA pathogenesis. Circulating miRNAs have drawn attention as a readily available biomarker due to their property of being clinically detectable in numerous human biofluids through non-invasive approaches. As there are recent promising findings from novel miRNA-based medicines, this article presents an extensive review of the most up-to-date studies connecting specific miRNAs to SMA pathogenesis and the potential applications of miRNAs as biomarkers and therapeutic targets for SMA.
Collapse
Affiliation(s)
- Tai-Heng Chen
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
The conserved microRNA miR-210 regulates lipid metabolism and photoreceptor maintenance in the Drosophila retina. Cell Death Differ 2020; 28:764-779. [PMID: 32913227 DOI: 10.1038/s41418-020-00622-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Abstract
Increasing evidence suggests that miRNAs play important regulatory roles in the nervous system. However, the molecular mechanisms of how specific miRNAs affect neuronal development and functions remain less well understood. In the present study, we provide evidence that the conserved microRNA miR-210 regulates lipid metabolism and prevents neurodegeneration in the Drosophila retina. miR-210 is specifically expressed in the photoreceptor neurons and other sensory organs. Genetic deletion of miR-210 leads to lipid droplet accumulation and photoreceptor degeneration in the retina. These effects are associated with abnormal activation of the Drosophila sterol regulatory element-binding protein signaling. We further identify the acetyl-coenzyme A synthetase (ACS) as one functionally important target of miR-210 in this context. Reduction of ACS in the miR-210 mutant background suppresses the neurodegeneration defects, suggesting that miR-210 acts through regulation of the ACS transcript. Together, these results reveal an unexpected role of miR-210 in controlling lipid metabolism and neuronal functions.
Collapse
|
12
|
Kadena K, Vlamos P. Amyotrophic Lateral Sclerosis: Current Status in Diagnostic Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:179-187. [PMID: 32468476 DOI: 10.1007/978-3-030-32633-3_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, neurodegenerative disease that affects the human motor system. ALS is a highly heterogeneous disease, depending on several causative factors. The heterogeneity of the disease is also reflected in the variation of the symptoms in ALS patients. The worldwide annual incidence of ALS is about 2.08 per 100,000 with uniform rates in Caucasian populations and lower rates in African, Asian, and Hispanic populations, while the number of individuals with ALS is expected to grow significantly between 2015 and 2040 with an estimated increase of 69% (Chio et al. 2013a; Arthur et al. 2016).
Collapse
Affiliation(s)
- Katerina Kadena
- Department of Informatics, Ionian University, Corfu, Greece.
| | | |
Collapse
|
13
|
Zhang X, Lyu J, Jin X, Yang W, Lou Z, Xi Y, Yang X, Ge W. A motor neuron protective role of miR-969 mediated by the transcription factor kay. RNA Biol 2020; 17:1277-1283. [PMID: 32397794 DOI: 10.1080/15476286.2020.1757897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Maintenance of motor neuron structure and function is crucial in development and motor behaviour. However, the genetic regulatory mechanism of motor neuron function remains less well understood. In the present study, we identify a novel neuroprotective role of the microRNA miR-969 in Drosophila motor neurons. miR-969 is highly expressed in motor neurons. Loss of miR-969 results in early-onset and age-progressive locomotion impairment. Flies lacking miR-969 also exhibit shortened lifespan. Moreover, miR-969 is required in motor neurons. We further identify kay as a functionally important target of miR-969. Together, our results indicate that miR-969 can protect motor neuron function by limiting kay activity in Drosophila.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Jialan Lyu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Xiaoye Jin
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Weiwei Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Ziwei Lou
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Valsecchi V, Anzilotti S, Serani A, Laudati G, Brancaccio P, Guida N, Cuomo O, Pignataro G, Annunziato L. miR-206 Reduces the Severity of Motor Neuron Degeneration in the Facial Nuclei of the Brainstem in a Mouse Model of SMA. Mol Ther 2020; 28:1154-1166. [PMID: 32075715 DOI: 10.1016/j.ymthe.2020.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease affecting infants caused by alterations of the survival motor neuron gene, which results in progressive degeneration of motor neurons (MNs). Although an effective treatment for SMA patients has been recently developed, the molecular pathway involved in selective MN degeneration has not been yet elucidated. In particular, miR-206 has been demonstrated to play a relevant role in the regeneration of neuromuscular junction in several MN diseases, and particularly it is upregulated in the quadriceps, tibialis anterior, spinal cord, and serum of SMA mice. In the present paper, we demonstrated that miR-206 was transiently upregulated also in the brainstem of the mouse model of SMA, SMAΔ7, in the early phase of the disease paralleling MN degeneration and was down-regulated in the late symptomatic phase. To prevent this downregulation, we intracerebroventricularly injected miR-206 in SMA pups, demonstrating that miR-206 reduced the severity of SMA pathology, slowing down disease progression, increasing survival rate, and improving behavioral performance of mice. Interestingly, exogenous miRNA-206-induced upregulation caused a reduction of the predicted target sodium calcium exchanger isoform 2, NCX2, one of the main regulators of intracellular [Ca2+] and [Na+]. Therefore, we hypothesized that miR-206 might exert part of its neuroprotective effect modulating NCX2 expression in SMA disease.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy.
| | | | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | | | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, via S. Pansini 5, 80131 Naples, Italy.
| | | |
Collapse
|
15
|
Chen TH, Chen JA. Multifaceted roles of microRNAs: From motor neuron generation in embryos to degeneration in spinal muscular atrophy. eLife 2019; 8:e50848. [PMID: 31738166 PMCID: PMC6861003 DOI: 10.7554/elife.50848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Two crucial questions in neuroscience are how neurons establish individual identity in the developing nervous system and why only specific neuron subtypes are vulnerable to neurodegenerative diseases. In the central nervous system, spinal motor neurons serve as one of the best-characterized cell types for addressing these two questions. In this review, we dissect these questions by evaluating the emerging role of regulatory microRNAs in motor neuron generation in developing embryos and their potential contributions to neurodegenerative diseases such as spinal muscular atrophy (SMA). Given recent promising results from novel microRNA-based medicines, we discuss the potential applications of microRNAs for clinical assessments of SMA disease progression and treatment.
Collapse
Affiliation(s)
- Tai-Heng Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical MedicineKaohsiung Medical University, Academia SinicaKaohsiungTaiwan
- Department of Pediatrics, Division of Pediatric EmergencyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
- Faculty of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jun-An Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical MedicineKaohsiung Medical University, Academia SinicaKaohsiungTaiwan
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
16
|
Extracellular RNAs as Biomarkers of Sporadic Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20133148. [PMID: 31252669 PMCID: PMC6651127 DOI: 10.3390/ijms20133148] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Recent progress in the research for underlying mechanisms in neurodegenerative diseases, including Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) has led to the development of potentially effective treatment, and hence increased the need for useful biomarkers that may enable early diagnosis and therapeutic monitoring. The deposition of abnormal proteins is a pathological hallmark of neurodegenerative diseases, including β-amyloid in AD, α-synuclein in PD, and the transactive response DNA/RNA binding protein of 43kDa (TDP-43) in ALS. Furthermore, progression of the disease process accompanies the spreading of abnormal proteins. Extracellular proteins and RNAs, including mRNA, micro RNA, and circular RNA, which are present as a composite of exosomes or other forms, play a role in cell–cell communication, and the role of extracellular molecules in the cell-to-cell spreading of pathological processes in neurodegenerative diseases is now in the spotlight. Therefore, extracellular proteins and RNAs are considered potential biomarkers of neurodegenerative diseases, in particular ALS, in which RNA dysregulation has been shown to be involved in the pathogenesis. Here, we review extracellular proteins and RNAs that have been scrutinized as potential biomarkers of neurodegenerative diseases, and discuss the possibility of extracellular RNAs as diagnostic and therapeutic monitoring biomarkers of sporadic ALS.
Collapse
|
17
|
Signal Exchange through Extracellular Vesicles in Neuromuscular Junction Establishment and Maintenance: From Physiology to Pathology. Int J Mol Sci 2019; 20:ijms20112804. [PMID: 31181747 PMCID: PMC6600513 DOI: 10.3390/ijms20112804] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular junction (NMJ) formation involves morphological changes both in motor terminals and muscle membrane. The molecular mechanisms leading to NMJ formation and maintenance have not yet been fully elucidated. During the last decade, it has become clear that virtually all cells release different types of extracellular vesicles (EVs), which can be taken up by nearby or distant cells modulating their activity. Initially, EVs were associated to a mechanism involved in the elimination of unwanted material; subsequent evidence demonstrated that exosomes, and more in general EVs, play a key role in intercellular communication by transferring proteins, lipids, DNA and RNA to target cells. Recently, EVs have emerged as potent carriers for Wnt, bone morphogenetic protein, miRNA secretion and extracellular traveling. Convincing evidence demonstrates that presynaptic terminals release exosomes that are taken up by muscle cells, and these exosomes can modulate synaptic plasticity in the recipient muscle cell in vivo. Furthermore, recent data highlighted that EVs could also be a potential cause of neurodegenerative disorders. Indeed, mutant SOD1, TDP-43 and FUS/TLS can be secreted by neural cells packaged into EVs and enter in neighboring neural cells, contributing to the onset and severity of the disease.
Collapse
|
18
|
MiR-105 and miR-9 regulate the mRNA stability of neuronal intermediate filaments. Implications for the pathogenesis of amyotrophic lateral sclerosis (ALS). Brain Res 2019; 1706:93-100. [DOI: 10.1016/j.brainres.2018.10.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 10/28/2018] [Indexed: 12/19/2022]
|
19
|
Characterization of circulating miRNA signature in water buffaloes (Bubalus bubalis) during Brucella abortus infection and evaluation as potential biomarkers for non-invasive diagnosis in vaginal fluid. Sci Rep 2019; 9:1945. [PMID: 30760784 PMCID: PMC6374377 DOI: 10.1038/s41598-018-38365-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
Brucellosis is an infectious disease caused by bacteria from the Brucella genus that can be transmitted to humans through contact with infected animals or contaminated animal products. Brucellosis also causes financial losses in animal production. Ruminants are highly susceptible to brucellosis, and the causative agent water buffaloes (Bubalus bubalis) is Brucella abortus. Circulating microRNAs (miRNAs) are cropping up as promising biomarkers for several infectious diseases. The goals of this study were to characterize the serum miRNA signature associated with brucellosis in water buffaloes and investigate the miRNAs’ potential use as biomarkers in vaginal fluids. Next Generation Sequencing was used to assess miRNA expression profiles in Brucella-positive and Brucella-negative blood sera; dysregulated miRNAs in blood serum and vaginal fluids were validated using RT-qPCR. ROC curves were generated to evaluate the diagnostic value of miRNAs for Brucella. GO and KEGG pathway enrichment analyses were exploited to investigate the biological functions of dysregulated miRNAs. The results showed that 20 miRNAs were modulated, of which, 12 were upregulated and 8 were downregulated. These findings were corroborated by RT-qPCR, and ROC curves indicated that the miRNAs can serve as potential biomarkers for Brucella. GO and KEGG pathway analyses pointed out that some of these miRNAs are related to immune response and apoptosis. These results provided an overview of miRNA expression profiles and highlighted potential biomarkers for Brucella infection in water buffaloes. We also demonstrated the potential of vaginal fluids in studies involving microRNA detection. Further functional and mechanistic studies of these miRNAs may improve our understanding of the biological processes involved in Brucella infection and host immune response.
Collapse
|
20
|
Varcianna A, Myszczynska MA, Castelli LM, O'Neill B, Kim Y, Talbot J, Nyberg S, Nyamali I, Heath PR, Stopford MJ, Hautbergue GM, Ferraiuolo L. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine 2019; 40:626-635. [PMID: 30711519 PMCID: PMC6413467 DOI: 10.1016/j.ebiom.2018.11.067] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Background Astrocytes regulate neuronal function, synaptic formation and maintenance partly through secreted extracellular vesicles (EVs). In amyotrophic lateral sclerosis (ALS) astrocytes display a toxic phenotype that contributes to motor neuron (MN) degeneration. Methods We used human induced astrocytes (iAstrocytes) from 3 ALS patients carrying C9orf72 mutations and 3 non-affected donors to investigate the role of astrocyte-derived EVs (ADEVs) in ALS astrocyte toxicity. ADEVs were isolated from iAstrocyte conditioned medium via ultracentrifugation and resuspended in fresh astrocyte medium before testing ADEV impact on HB9-GFP+ mouse motor neurons (Hb9-GFP+ MN). We used post-mortem brain and spinal cord tissue from 3 sporadic ALS and 3 non-ALS cases for PCR analysis. Findings We report that EV formation and miRNA cargo are dysregulated in C9ORF72-ALS iAstrocytes and this affects neurite network maintenance and MN survival in vitro. In particular, we have identified downregulation of miR-494-3p, a negative regulator of semaphorin 3A (SEMA3A) and other targets involved in axonal maintenance. We show here that by restoring miR-494-3p levels through expression of an engineered miRNA mimic we can downregulate Sema3A levels in MNs and increases MN survival in vitro. Consistently, we also report lower levels of mir-494-3p in cortico-spinal tract tissue isolated from sporadic ALS donors, thus supporting the pathological importance of this pathway in MNs and its therapeutic potential. Interpretation ALS ADEVs and their miRNA cargo are involved in MN death in ALS and we have identified miR-494-3p as a potential therapeutic target. Funding: Thierry Latran Fondation and Academy of Medical Sciences.
Collapse
Affiliation(s)
- André Varcianna
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Monika A Myszczynska
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Lydia M Castelli
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Brendan O'Neill
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Yeseul Kim
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Jordan Talbot
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Sophie Nyberg
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Immanuelle Nyamali
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Matthew J Stopford
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Guillaume M Hautbergue
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK.
| |
Collapse
|
21
|
Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet 2019; 9:712. [PMID: 30723494 PMCID: PMC6349704 DOI: 10.3389/fgene.2018.00712] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease and is characterized by the degeneration of upper and lower motor neurons. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. The major ALS genes SOD1, TARDBP, FUS, and C9orf72 are involved in aspects of RNA metabolism processes such as mRNA transcription, alternative splicing, RNA transport, mRNA stabilization, and miRNA biogenesis. In this review, we highlight the current understanding of RNA dysregulation in ALS pathogenesis involving these major ALS genes and discuss the potential of therapeutic strategies targeting disease RNAs for treating ALS.
Collapse
Affiliation(s)
- Zoe Butti
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| | - Shunmoogum A Patten
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| |
Collapse
|
22
|
Taga A, Maragakis NJ. Current and emerging ALS biomarkers: utility and potential in clinical trials. Expert Rev Neurother 2018; 18:871-886. [DOI: 10.1080/14737175.2018.1530987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Arens Taga
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
23
|
Campos-Melo D, Hawley ZCE, Strong MJ. Dysregulation of human NEFM and NEFH mRNA stability by ALS-linked miRNAs. Mol Brain 2018; 11:43. [PMID: 30029677 PMCID: PMC6054723 DOI: 10.1186/s13041-018-0386-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs) are the most abundant cytoskeletal component of vertebrate myelinated axons. NFs function by determining axonal caliber, promoting axonal growth and forming a 3-dimensional lattice that supports the organization of cytoplasmic organelles. The stoichiometry of NF protein subunits (NFL, NFM and NFH) has to be tightly controlled to avoid the formation of NF neuronal cytoplasmic inclusions (NCIs), axonal degeneration and neuronal death, all pathological hallmarks of amyotrophic lateral sclerosis (ALS). The post-transcriptional control of NF transcripts is critical for regulating normal levels of NF proteins. Previously, we showed that miRNAs that are dysregulated in ALS spinal cord regulate the levels of NEFL mRNA. In order to complete the understanding of altered NF expression in ALS, in this study we have investigated the regulation of NEFM and NEFH mRNA levels by miRNAs. We observed that a small group of ALS-linked miRNAs that are expressed in human spinal motor neurons directly regulate NEFM and NEFH transcript levels in a manner that is associated with an increase in NFM and NFH protein levels in ALS spinal cord homogenates. In concert with previous observations demonstrating the suppression of NEFL mRNA steady state levels in ALS, these observations provide support for the hypothesis that the dysregulation of miRNAs in spinal motor neurons in ALS fundamentally alters the stoichiometry of NF expression, leading to the formation of pathological NCIs.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,University Hospital, LHSC, Rm C7-120, 339, Windermere Road, London, ON, N6A 5A5, Canada.
| |
Collapse
|
24
|
miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non-Cell-Autonomous Mechanism in ALS. J Neurosci 2018; 38:5478-5494. [PMID: 29773756 PMCID: PMC6001038 DOI: 10.1523/jneurosci.3037-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS.SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo.
Collapse
|
25
|
Zhou F, Zhang C, Guan Y, Chen Y, Lu Q, Jie L, Gao H, Du H, Zhang H, Liu Y, Wang X. Screening the expression characteristics of several miRNAs in G93A-SOD1
transgenic mouse: altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem 2017; 145:51-67. [DOI: 10.1111/jnc.14229] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Fenghua Zhou
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Caixia Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yingjun Guan
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yanchun Chen
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Qiang Lu
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Linlin Jie
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hailing Gao
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hongmei Du
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Haoyun Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yongxin Liu
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Xin Wang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
26
|
Novel miR-b2122 regulates several ALS-related RNA-binding proteins. Mol Brain 2017; 10:46. [PMID: 28969660 PMCID: PMC5625648 DOI: 10.1186/s13041-017-0326-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023] Open
Abstract
Common pathological features of amyotrophic lateral sclerosis (ALS) include cytoplasmic aggregation of several RNA-binding proteins. Out of these RNA-binding proteins, TDP-43, FUS/TLS and RGNEF have been shown to co-aggregate with one another within motor neurons of sporadic ALS (sALS) patients, suggesting that there may be a common regulatory network disrupted. MiRNAs have been a recent focus in ALS research as they have been identified to be globally down-regulated in the spinal cord of ALS patients. The objective of this study was to identify if there are miRNA(s) dysregulated in sALS that are responsible for regulating the TDP-43, FUS/TLS and RGNEF network. In this study, we identify miR-194 and miR-b2122 to be significantly down-regulated in sALS patients, and were predicted to regulate TARDBP, FUS/TLS and RGNEF expression. Reporter gene assays and RT-qPCR revealed that miR-b2122 down-regulates the reporter gene through direct interactions with either the TARDBP, FUS/TLS, or RGNEF 3’UTR, while miR-194 down-regulates firefly expression when it contained either the TARDBP or FUS/TLS 3’UTR. Further, we showed that miR-b2122 regulates endogenous expression of all three of these genes in a neuronal-derived cell line. Also, an ALS-associated mutation in the FUS/TLS 3’UTR ablates the ability of miR-b2122 to regulate reporter gene linked to FUS/TLS 3’UTR, and sALS samples which showed a down-regulation in miR-b2122 also showed an increase in FUS/TLS protein expression. Overall, we have identified a novel miRNA that is down-regulated in sALS that appears to be a central regulator of disease-related RNA-binding proteins, and thus its dysregulation likely contributes to TDP-43, FUS/TLS and RGNEF pathogenesis in sALS.
Collapse
|