1
|
Calì C. Regulated exocytosis from astrocytes: a matter of vesicles? Front Neurosci 2024; 18:1393165. [PMID: 38800570 PMCID: PMC11116621 DOI: 10.3389/fnins.2024.1393165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| |
Collapse
|
2
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
3
|
Jang J, Yeo S, Baek S, Jung HJ, Lee MS, Choi SH, Choe Y. Abnormal accumulation of extracellular vesicles in hippocampal dystrophic axons and regulation by the primary cilia in Alzheimer's disease. Acta Neuropathol Commun 2023; 11:142. [PMID: 37667395 PMCID: PMC10478284 DOI: 10.1186/s40478-023-01637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Dystrophic neurites (DNs) are abnormal axons and dendrites that are swollen or deformed in various neuropathological conditions. In Alzheimer's disease (AD), DNs play a crucial role in impairing neuronal communication and function, and they may also contribute to the accumulation and spread of amyloid beta (Aβ) in the brain of AD patients. However, it is still a challenge to understand the DNs of specific neurons that are vulnerable to Aβ in the pathogenesis of AD. To shed light on the development of radiating DNs, we examined enriched dystrophic hippocampal axons in a mouse model of AD using a three-dimensional rendering of projecting neurons. We employed the anterograde spread of adeno-associated virus (AAV)1 and conducted proteomic analysis of synaptic compartments obtained from hippocampo-septal regions. Our findings revealed that DNs were formed due to synaptic loss at the axon terminals caused by the accumulation of extracellular vesicle (EV). Abnormal EV-mediated transport and exocytosis were identified in association with primary cilia, indicating their involvement in the accumulation of EVs at presynaptic terminals. To further address the regulation of DNs by primary cilia, we conducted knockdown of the Ift88 gene in hippocampal neurons, which impaired EV-mediated secretion of Aβ and promoted accumulation of axonal spheroids. Using single-cell RNA sequencing, we identified the septal projecting hippocampal somatostatin neurons (SOM) as selectively vulnerable to Aβ with primary cilia dysfunction and vesicle accumulation. Our study suggests that DNs in AD are initiated by the ectopic accumulation of EVs at the neuronal axon terminals, which is affected by neuronal primary cilia.
Collapse
Affiliation(s)
| | - Seungeun Yeo
- Korea Brain Research Institute, Daegu, 41068, Korea
| | | | | | - Mi Suk Lee
- Korea Brain Research Institute, Daegu, 41068, Korea
| | | | - Youngshik Choe
- Korea Brain Research Institute, Daegu, 41068, Korea.
- , Daegu, Korea.
| |
Collapse
|
4
|
Wang W, Zhao F, Lu Y, Siedlak SL, Fujioka H, Feng H, Perry G, Zhu X. Damaged mitochondria coincide with presynaptic vesicle loss and abnormalities in alzheimer's disease brain. Acta Neuropathol Commun 2023; 11:54. [PMID: 37004141 PMCID: PMC10067183 DOI: 10.1186/s40478-023-01552-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Loss of synapses is the most robust pathological correlate of Alzheimer's disease (AD)-associated cognitive deficits, although the underlying mechanism remains incompletely understood. Synaptic terminals have abundant mitochondria which play an indispensable role in synaptic function through ATP provision and calcium buffering. Mitochondrial dysfunction is an early and prominent feature in AD which could contribute to synaptic deficits. Here, using electron microscopy, we examined synapses with a focus on mitochondrial deficits in presynaptic axonal terminals and dendritic spines in cortical biopsy samples from clinically diagnosed AD and age-matched non-AD control patients. Synaptic vesicle density within the presynaptic axon terminals was significantly decreased in AD cases which appeared largely due to significantly decreased reserve pool, but there were significantly more presynaptic axons containing enlarged synaptic vesicles or dense core vesicles in AD. Importantly, there was reduced number of mitochondria along with significantly increased damaged mitochondria in the presynapse of AD which correlated with changes in SV density. Mitochondria in the post-synaptic dendritic spines were also enlarged and damaged in the AD biopsy samples. This study provided evidence of presynaptic vesicle loss as synaptic deficits in AD and suggested that mitochondrial dysfunction in both pre- and post-synaptic compartments contribute to synaptic deficits in AD.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Yubing Lu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Hisashi Fujioka
- Cryo-EM Core Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas, San Antonio, TX, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Zhu S, Bäckström D, Forsgren L, Trupp M. Alterations in Self-Aggregating Neuropeptides in Cerebrospinal Fluid of Patients with Parkinsonian Disorders. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1169-1189. [PMID: 35253777 PMCID: PMC9198747 DOI: 10.3233/jpd-213031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Parkinson’s disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) present with similar movement disorder symptoms but distinct protein aggregates upon pathological examination. Objective: Discovery and validation of candidate biomarkers in parkinsonian disorders for differential diagnosis of subgroup molecular etiologies. Methods: Untargeted liquid chromatography (LC)-mass spectrometry (MS) proteomics was used for discovery profiling in cerebral spinal fluid (CSF) followed by LC-MS/MS based multiple reaction monitoring for validation of candidates. We compared clinical variation within the parkinsonian cohort including PD subgroups exhibiting tremor dominance (TD) or postural instability gait disturbance and those with detectable leukocytes in CSF. Results: We have identified candidate peptide biomarkers and validated related proteins with targeted quantitative multiplexed assays. Dopamine-drug naïve patients at first diagnosis exhibit reduced levels of signaling neuropeptides, chaperones, and processing proteases for packaging of self-aggregating peptides into dense core vesicles. Distinct patterns of biomarkers were detected in the parkinsonian disorders but were not robust enough to offer a differential diagnosis. Different biomarker changes were detected in male and female patients with PD. Subgroup specific candidate biomarkers were identified for TD PD and PD patients with leukocytes detected in CSF. Conclusion: PD, MSA, and PSP exhibit overlapping as well as distinct protein biomarkers that suggest specific molecular etiologies. This indicates common sensitivity of certain populations of selectively vulnerable neurons in the brain, and distinct therapeutic targets for PD subgroups. Our report validates a decrease in CSF levels of self-aggregating neuropeptides in parkinsonian disorders and supports the role of native amyloidogenic proteins in etiologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shaochun Zhu
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - David Bäckström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Barranco N, Plá V, Alcolea D, Sánchez-Domínguez I, Fischer-Colbrie R, Ferrer I, Lleó A, Aguado F. Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer's disease. Transl Neurodegener 2021; 10:37. [PMID: 34565482 PMCID: PMC8466657 DOI: 10.1186/s40035-021-00263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. Methods Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55).
Results In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. Conclusions These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00263-0.
Collapse
Affiliation(s)
- Neus Barranco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | - Virginia Plá
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Irene Sánchez-Domínguez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | | | - Isidro Ferrer
- Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, and Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Fernando Aguado
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
7
|
Fabbretti E, Antognolli G, Tongiorgi E. Amyloid-β Impairs Dendritic Trafficking of Golgi-Like Organelles in the Early Phase Preceding Neurite Atrophy: Rescue by Mirtazapine. Front Mol Neurosci 2021; 14:661728. [PMID: 34149353 PMCID: PMC8209480 DOI: 10.3389/fnmol.2021.661728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Neurite atrophy with loss of neuronal polarity is a pathological hallmark of Alzheimer's disease (AD) and other neurological disorders. While there is substantial agreement that disruption of intracellular vesicle trafficking is associated with axonal pathology in AD, comparatively less is known regarding its role in dendritic atrophy. This is a significant gap of knowledge because, unlike axons, dendrites are endowed with the complete endomembrane system comprising endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), Golgi apparatus, post-Golgi vesicles, and a recycling-degradative route. In this study, using live-imaging of pGOLT-expressing vesicles, indicative of Golgi outposts and satellites, we investigate how amyloid-β (Aβ) oligomers affect the trafficking of Golgi-like organelles in the different dendritic compartments of cultured rat hippocampal neurons. We found that short-term (4 h) treatment with Aβ led to a decrease in anterograde trafficking of Golgi vesicles in dendrites of both resting and stimulated (with 50 mM KCl) neurons. We also characterized the ability of mirtazapine, a noradrenergic and specific serotonergic tetracyclic antidepressant (NaSSA), to rescue Golgi dynamics in dendrites. Mirtazapine treatment (10 μM) increased the number and both anterograde and retrograde motility, reducing the percentage of static Golgi vesicles. Finally, mirtazapine reverted the neurite atrophy induced by 24 h treatment with Aβ oligomers, suggesting that this drug is able to counteract the effects of Aβ by improving the dendritic trafficking of Golgi-related vesicles.
Collapse
Affiliation(s)
- Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Ruiter M, Lützkendorf C, Liang J, Wierenga CJ. Amyloid-β Oligomers Induce Only Mild Changes to Inhibitory Bouton Dynamics. J Alzheimers Dis Rep 2021; 5:153-160. [PMID: 33981952 PMCID: PMC8075564 DOI: 10.3233/adr-200291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The amyloid-β protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and inhibitory neurons have been suggested to play an important role in early Alzheimer’s disease plaque load. Here we investigated bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-β (Aβ)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton density and dynamics were unchanged in hippocampus slices of young-adult AppNL - F - G-mice, in which Aβ levels are chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution to Aβ-induced hyperexcitability.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Christine Lützkendorf
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jian Liang
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Corette J Wierenga
- Department of Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Gomi H, Hinata A, Yasui T, Torii S, Hosaka M. Expression Pattern of the LacZ Reporter in Secretogranin III Gene-trapped Mice. J Histochem Cytochem 2021; 69:229-243. [PMID: 33622062 DOI: 10.1369/0022155421996845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretogranin III (SgIII) is a granin protein involved in secretory granule formation in peptide-hormone-producing endocrine cells. In this study, we analyzed the expression of the LacZ reporter in the SgIII knockout mice produced by gene trapping (SgIII-gtKO) for the purpose of comprehensively clarifying the expression patterns of SgIII at the cell and tissue levels. In the endocrine tissues of SgIII-gtKO mice, LacZ expression was observed in the pituitary gland, adrenal medulla, and pancreatic islets, where SgIII expression has been canonically revealed. LacZ expression was extensively observed in brain regions, especially in the cerebral cortex, hippocampus, hypothalamic nuclei, cerebellum, and spinal cord. In peripheral nervous tissues, LacZ expression was observed in the retina, optic nerve, and trigeminal ganglion. LacZ expression was particularly prominent in astrocytes, in addition to neurons and ependymal cells. In the cerebellum, at least four cell types expressed SgIII under basal conditions. The expression of SgIII in the glioma cell lines C6 and RGC-6 was enhanced by excitatory glutamate treatment. It also became clear that the expression level of SgIII varied among neuron and astrocyte subtypes. These results suggest that SgIII is involved in glial cell function, in addition to neuroendocrine functions, in the nervous system.
Collapse
Affiliation(s)
- Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Airi Hinata
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Seiji Torii
- Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| |
Collapse
|
10
|
Zhan X, Wen G, Jiang E, Li F, Wu X, Pang H. Secretogranin III upregulation is involved in parkinsonian toxin-mediated astroglia activation. J Toxicol Sci 2020; 45:271-280. [PMID: 32404559 DOI: 10.2131/jts.45.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Environmental neurotoxins such as paraquat (PQ), manganese, and 1-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are associated with a higher risk of Parkinson's disease (PD). These parkinsonian toxins exert certain common toxicological effects on astroglia; however, their role in the regulatory functions of astroglial secretory proteins remains unclear. In a previous study, we observed that secretogranin II (SCG2) and secretogranin III (SCG3), which are important components of the regulated secretory pathway, were elevated in PQ-activated U118 astroglia. In the current study, we used the parkinsonian toxins dopamine (DA), active metabolite of MPTP (MPP+), MnCl2, and lipopolysaccharide (LPS) as inducers, and studied the potential regulation of SCG2 and SCG3. Our results showed that all the parkinsonian toxins except LPS affected astroglial viability but did not cause apoptosis. Exposure to DA, MPP+, and MnCl2 upregulated glial fibrillary acidic protein (GFAP), a marker for astrocyte activation, and stimulated the levels of several astrocytic-derived factors. Further, DA, MPP+, and MnCl2 exposure impeded astroglial cell cycle progression. Moreover, the expression of SCG3 was elevated, while its exosecretion was inhibited in astroglia activated by parkinsonian toxins. The level of SCG2 remained unchanged. In combination with our previous findings, the results of this study indicate that SCG3 may act as a cofactor in astrocyte activation stimulated by various toxins, and the regulation of SCG3 could be involved in the toxicological mechanism by which parkinsonian toxins affect astroglia.
Collapse
Affiliation(s)
- Xiaoni Zhan
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| | - Gehua Wen
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, China
| | - Enzhu Jiang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| | | | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, China
| | - Hao Pang
- Department of Forensic Genetics and Biology, School of Forensic Medicine, China Medical University, China
| |
Collapse
|