1
|
Yu X, Wang M, cen J, Ye M, Li S, Wang Y, Su Q, Chen H, Xu R, Zhang S, Wang S, Yu Y, Deng Z, Chen Z. Advice for smokers in smoking cessation clinic: a review. Afr Health Sci 2023; 23:374-379. [PMID: 38223627 PMCID: PMC10782343 DOI: 10.4314/ahs.v23i2.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background Tobacco dependence has become a global public health concern. We chose to investigate the modifiable factors and motivations during the period of smoking cessation based on the mechanism of nicotine addiction. Methods We selected emotion, sleep, alcohol, caffeine beverages, mental activities after dinner, exercise and CYP2A6 genotype as influencing factors, and provided corresponding recommendations for smokers based on these factors. Based on these characteristics, we reviewed literature and summarized the relationship between these factors and nicotine dependence or smoking. Results Different emotion, sleep deficiency, caffeine intake, alcohol consumption, mental activities after dinner, physical exercises and CYP2A6 genotype have an effect on daily smoking and nicotine dependence. Conclusion These suggestions related literature-derived factors may increase the success rate of smoking cessation.
Collapse
Affiliation(s)
- Xuechan Yu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Meihua Wang
- Department of Neurology, Ningbo ninth Hospital No.68, Xiangbei Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Jie cen
- Department of Pulmonary and Critical Care Medicine, Ningbo ninth Hospital, No.68, Xiangbei Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Mianzhi Ye
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Sha Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Younuo Wang
- Department of Prevention and Health Care, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315020
| | - Qingwen Su
- Department of Prevention and Health Care, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315020
| | - Hui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Ruyi Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Shuya Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Shanshan Wang
- Department of Prevention and Health Care, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315020
| | - Yiming Yu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Zaichun Deng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| | - Zhongbo Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Ningbo University No.247, Renmin Road, Jiangbei District Ningbo, Zhejiang Province, China, 315010
| |
Collapse
|
2
|
Quijano Cardé NA, Shaw J, Carter C, Kim S, Stitzel JA, Venkatesh SK, Ramchandani VA, De Biasi M. Mutation of the α5 nicotinic acetylcholine receptor subunit increases ethanol and nicotine consumption in adolescence and impacts adult drug consumption. Neuropharmacology 2022; 216:109170. [PMID: 35752273 PMCID: PMC9308728 DOI: 10.1016/j.neuropharm.2022.109170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Alcohol and nicotine are commonly used during adolescence, establishing long-lasting neuroplastic alterations that influence subsequent drug use and abuse. Drinking- and smoking-related traits have been extensively associated with variation in CHRNA5 - the gene that encodes the α5 subunit of neuronal nicotinic acetylcholine receptors (nAChRs). The single nucleotide polymorphism (SNP) rs16969968 in CHRNA5 encodes an amino acid substitution (D398N) that alters the function and pharmacokinetics of α5-containing nAChR. When expressed in rodents, this variant results in increased ethanol and nicotine operant self-administration. How disruption of α5-containing nAChRs influences adolescent ethanol and nicotine intake, and how it modulates interactions between these drugs has not been previously explored. In the present study, we examined volitional ethanol and nicotine consumption in adolescent mice (post-natal day 30-43) of both sexes with mutated (SNP) or lacking (KO) the α5 nAChR subunit. The effect of adolescent alcohol or nicotine exposure on home cage consumption of the opposite drug in adulthood and its modulation by Chrna5 mutation and sex were examined. During adolescence, we found that α5 nAChR disruption increases nicotine intake in mice of both sexes, but the effect on alcohol intake was only observed in females. The sex-specific increase in alcohol consumption in α5 SNP and KO was replicated in adulthood. The effect of adolescent alcohol or nicotine exposure on subsequent intake of the opposite drug in adulthood is modulated by sex and Chrna5 mutation. These observations suggest sex differences in the genetic architecture of alcohol dependence, and modulators of alcohol and nicotine interactions.
Collapse
Affiliation(s)
- Natalia A Quijano Cardé
- Pharmacology Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Shaw
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Christina Carter
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Seung Kim
- Neuroscience Program, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Shyamala K Venkatesh
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Laboratory of Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A Ramchandani
- Laboratory of Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mariella De Biasi
- Pharmacology Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Neural serotonergic circuits for controlling long-term voluntary alcohol consumption in mice. Mol Psychiatry 2022; 27:4599-4610. [PMID: 36195637 PMCID: PMC9531213 DOI: 10.1038/s41380-022-01789-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Alcohol-use-disorders are chronic relapsing illnesses, often co-morbid with anxiety. We have previously shown using the "drinking-in-the-dark" model in mice that the stimulation of the serotonin receptor 1A (5-HT1A) reduces ethanol binge-drinking behaviour and withdrawal-induced anxiety. The 5-HT1A receptor is located either on Raphe neurons as autoreceptors, or on target neurons as heteroreceptors. By combining a pharmacological approach with biased agonists targeting the 5-HT1A auto- or heteroreceptor and a chemogenetic approach (DREADDs), here we identified that ethanol-binge drinking behaviour is dependent on 5-HT1A autoreceptors and 5-HT neuronal function, with a transition from DRN-dependent regulation of short-term (6 weeks) ethanol intake, to MRN-dependent regulation after longer ethanol exposure (12 weeks). We further identified a serotonergic microcircuit (5-HTMRN→DG) originating from the MRN and projecting to the dentate gyrus (DG) of the hippocampus, that is specifically affected by, and modulates long-term ethanol consumption. The present study indicates that targeting Raphe nuclei 5-HT1A autoreceptors with agonists might represent an innovative pharmacotherapeutic strategy to combat alcohol abuse.
Collapse
|
4
|
Moen JK, Lee AM. Sex Differences in the Nicotinic Acetylcholine Receptor System of Rodents: Impacts on Nicotine and Alcohol Reward Behaviors. Front Neurosci 2021; 15:745783. [PMID: 34621155 PMCID: PMC8490611 DOI: 10.3389/fnins.2021.745783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol and nicotine are the two most widely used and misused drugs around the world, and co-consumption of both substances is highly prevalent. Multiple lines of evidence show a profound effect of sex in many aspects of alcohol and nicotine reward, with women having more difficulty quitting smoking and showing a faster progression toward developing alcohol use disorder compared with men. Both alcohol and nicotine require neuronal nicotinic acetylcholine receptors (nAChRs) to elicit rewarding effects within the mesolimbic system, representing a shared molecular pathway that likely contributes to the frequent comorbidity of alcohol and nicotine dependence. However, the majority of preclinical studies on the mechanisms of alcohol and nicotine reward behaviors utilize only male rodents, and thus our understanding of alcohol and nicotine neuropharmacology relies heavily on male data. As preclinical research informs the development and refinement of therapies to help patients reduce drug consumption, it is critical to understand the way biological sex and sex hormones influence the rewarding properties of alcohol and nicotine. In this review, we summarize what is known about sex differences in rodent models of alcohol and nicotine reward behaviors with a focus on neuronal nAChRs, highlighting exciting areas for future research. Additionally, we discuss the way circulating sex hormones may interact with neuronal nAChRs to influence reward-related behavior.
Collapse
Affiliation(s)
- Janna K Moen
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Anna M Lee
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States.,Department of Pharmacology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
5
|
DeCristofano L, Decker S, Schulte MK, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α 4β 2 nicotinic receptor modulates the hypnotic response to ethanol. Alcohol 2021; 93:35-44. [PMID: 33652092 DOI: 10.1016/j.alcohol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Binge drinking can increase an individual's risk of developing alcohol use disorder (AUD). Ethanol targets multiple neurotransmitter systems; however, not much is known about its effects on the cholinergic system. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, the heteromeric α4β2 nAChR being a commonly expressed subtype. Desformylflustrabromine (dFBr), a positive allosteric modulator (PAM), increases the efficacy of α4β2 nAChR in vitro and has previously been shown to have translational potential. In this study, we investigated whether dFBr modulates the hypnotic response to ethanol. METHODS Ethanol-induced loss of righting reflex (LORR) duration was measured in the presence and absence of dFBr. The β2 nAChR selective antagonist dihydro-β-erythroidine (DHβE) was used to study the involvement of the β2 subunit. Additionally, we used a crosslinking-based western blot assay to estimate changes in total versus intracellular α4 nAChR protein in thalamic tissue of rats treated with vehicle, dFBr, ethanol, or ethanol and dFBr. Lastly, using Xenopus oocyte two-electrode voltage clamp (TEVC) studies, we determined the effects of ethanol and dFBr on α4β2 nAChR. RESULTS Pretreatment with 6 mg/kg dFBr reduced ethanol-induced LORR duration as compared to rats treated with ethanol alone. LORR studies with DHβE suggest that dFBr reduced ethanol-induced LORR duration via the β2 nAChR subunit. Crosslinking-based western analyses revealed that ethanol caused early increases in total and presumably surface thalamic α4 nAChR subunit protein levels. This ethanol-induced α4 nAChR upregulation was significantly reduced in rats pretreated with 6 mg/kg dFBr. In TEVC studies, ethanol potentiated ACh-induced currents in α4β2 nAChR, while it slightly reduced dFBr potentiation of maximal ACh currents. CONCLUSIONS Our results suggest that thalamic nAChRs containing the α4 subunit are rapidly upregulated by a single intoxicating dose of ethanol. Furthermore, dFBr, an α4β2 nAChR-selective PAM, significantly attenuates the hypnotic response to ethanol via actions on β2 nAChR. Overall, these results indicate that dFBr represents an option to reverse ethanol intoxication.
Collapse
|
6
|
Villavasso S, Shaw C, Skripnikova E, Shah K, Davis JF, Sirohi S. Nutritional Contingency Reduces Alcohol Drinking by Altering Central Neurotransmitter Receptor Gene Expression in Rats. Nutrients 2019; 11:E2731. [PMID: 31717954 PMCID: PMC6893745 DOI: 10.3390/nu11112731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
We have previously shown that 6 weeks of intermittent high-fat diet (Int-HFD) pre-exposure significantly reduced alcohol drinking in rats, providing preliminary evidence of the effectiveness of a dietary intervention in reducing alcohol intake. However, the functional framework and underlying neurobiological mechanisms of such dietary intervention are unknown. Here, we examined the impact of Int-HFD pre-exposure duration on alcohol drinking, plasma feeding peptides, and central neurotransmitter receptors gene expression. Male Long Evans rats (n = 6-7/group) received no pre-exposure, 1 or 2 weeks pre-exposure to Int-HFD and alcohol drinking (two-bottle choice) was evaluated. We observed HFD pre-exposure-dependent decrease in alcohol drinking, with a significant decrease observed following 2 weeks of Int-HFD pre-exposure. No significant between-group differences in plasma feeding peptides (i.e., ghrelin, leptin, insulin) were detected. A PCR array revealed that the expression of several neurotransmitter receptors was significantly (p < 0.05 and ≥2-fold) altered in the striatum and ventral tegmental area compared to controls. These data suggest that pre-exposure to a palatable diet is critical to reduce alcohol drinking in rats, possibly through genetic alterations in the brain reward circuitry. Importantly, the present study is a step forward in identifying the critical framework needed to evaluate the therapeutic potential of nutritional contingency in the management of alcoholism.
Collapse
Affiliation(s)
- Starr Villavasso
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Cemilia Shaw
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Elena Skripnikova
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Krishna Shah
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA;
| | - Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA; (S.V.); (C.S.); (E.S.); (K.S.)
| |
Collapse
|
7
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Belmer A, Beecher K, Jacques A, Patkar OL, Sicherre F, Bartlett SE. Axonal Non-segregation of the Vesicular Glutamate Transporter VGLUT3 Within Serotonergic Projections in the Mouse Forebrain. Front Cell Neurosci 2019; 13:193. [PMID: 31133811 PMCID: PMC6523995 DOI: 10.3389/fncel.2019.00193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/17/2019] [Indexed: 11/13/2022] Open
Abstract
A subpopulation of raphe 5-HT neurons expresses the vesicular glutamate transporter VGLUT3 with the co-release of glutamate and serotonin proposed to play a pivotal role in encoding reward- and anxiety-related behaviors. Serotonin axons are identifiable by immunolabeling of either serotonin (5-HT) or the plasma membrane 5-HT transporter (SERT), with SERT labeling demonstrated to be only partially overlapping with 5-HT staining. Studies investigating the colocalization or segregation of VGLUT3 within SERT or 5-HT immunolabeled boutons have led to inconsistent results. Therefore, we combined immunohistochemistry, high resolution confocal imaging, and 3D-reconstruction techniques to map and quantify the distribution of VGLUT3 immunoreactive boutons within 5-HT vs. SERT-positive axons in various regions of the mouse forebrain, including the prefrontal cortex, nucleus accumbens core and shell, bed nucleus of the stria terminalis, dorsal striatum, lateral septum, basolateral and central amygdala, and hippocampus. Our results demonstrate that about 90% of 5-HT boutons are colocalized with SERT in almost all the brain regions studied, which therefore reveals that VGLUT3 and SERT do not segregate. However, in the posterior part of the NAC shell, we confirmed the presence of a subtype of 5-HT immunoreactive axons that lack the SERT. Interestingly, about 90% of the 5-HT/VGLUT3 boutons were labeled for the SERT in this region, suggesting that VGLUT3 is preferentially located in SERT immunoreactive 5-HT boutons. This work demonstrates that VGLUT3 and SERT cannot be used as specific markers to classify the different subtypes of 5-HT axons.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Omkar L Patkar
- QIMR Berghofer Medical Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Florian Sicherre
- Biologie Integrative et Physiologie, Université Pierre et Marie Curie, Paris, France
| | - Selena E Bartlett
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Holgate JY, Tarren JR, Bartlett SE. Sex Specific Alterations in α4*Nicotinic Receptor Expression in the Nucleus Accumbens. Brain Sci 2018; 8:brainsci8040070. [PMID: 29671814 PMCID: PMC5924406 DOI: 10.3390/brainsci8040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Background: The mechanisms leading from traumatic stress to social, emotional and cognitive impairment and the development of mental illnesses are still undetermined and consequently there remains a critical need to develop therapies for preventing the adverse consequences of traumatic stress. Research indicates nicotinic acetylcholine receptors containing α4 subunits (α4*nAChRs) are both impacted by stress and capable of modulating the stress response. In this study, we investigated whether varenicline, a partial α4β2*nAChR agonist which reduces nicotine, alcohol and sucrose consumption, can reduce stress, a driving factor in substance use disorders. We also examined the effect of stress on nucleus accumbens (NAc) α4*nAChR expression. Methods: Transgenic mice with fluorescent tags attached to α4*nAChRs were administered varenicline and/or yohimbine (a pharmacological stressor) and plasma corticosterone and NAc α4*nAChR expression were measured. A separated group of mice were exposed to maternal separation (MS) during post-natal day (P) 2–14, then restraint stressed (30 min) at six weeks of age. Body weight, anxiety-like behaviours (elevated plus maze), plasma corticosterone and NAc α4*nAChR levels were measured. Results: Varenicline attenuated yohimbine-induced plasma corticosterone increases with no effect on NAc α4*nAChR expression. MS reduced unrestrained plasma corticosterone levels in both sexes. In females, MS increased body weight and NAc α4*nAChR expression, whereas, in males, MS and restraint caused a greater change in anxiety-like behaviours and plasma corticosterone levels. Restraint altered NAc α4*nAChR expression in both male and female MS mice. Conclusions: The effects of stress on NAc α4*nAChR are sex-dependent. While varenicline attenuated acute stress-induced rises in corticosterone levels, future studies are required to determine whether varenicline is effective for relieving the effects of stress.
Collapse
Affiliation(s)
- Joan Y Holgate
- Institute of Health and Medical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| | - Josephine R Tarren
- Institute of Health and Medical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| | - Selena E Bartlett
- Institute of Health and Medical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|