1
|
Ding P, Zhang J, Li X, Ma P, Hu G, Zhang L, Yu Y. Transgenerational thyroid hormone disruption in zebrafish induced by environmentally relevant concentrations of triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126242. [PMID: 40222611 DOI: 10.1016/j.envpol.2025.126242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The use of triclosan (TCS)-containing disinfectants has become increasingly prevalent in response to the COVID-19 pandemic, leading to a heightened presence of TCS in aquatic ecosystems. Thyroid hormones (THs), which are essential for numerous developmental and metabolic processes, are structurally similar to TCS, rendering it prone to exert endocrine-disrupting effects. In this study, we demonstrate that TCS can induce thyroid hormone disruption in zebrafish, with transgenerational consequences. Zebrafish embryos were exposed to environmentally relevant concentrations of TCS (0, 1, 3, and 10 μg/L) for 30, 60, and 180 days. TCS accumulated in zebrafish over an extended period, causing significant, dose-dependent alterations in TH levels. Furthermore, TCS significantly thereby interfered with the expression of thyroid axis-related genes in the P0-F1 generations. Molecular docking further confirmed that TCS induces transgenerational thyroid effects through potentially strong interactions with thyroglobulin (TG), interfering with the normal physiological function of THs. These findings suggest that TCS at environmentally relevant concentrations can exert ecologically harmful effects by disrupting THs. A rigorous ecological assessment of TCS is recommended before promoting or substituting antimicrobial agents in future disinfection products.
Collapse
Affiliation(s)
- Ping Ding
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiayi Zhang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Xin Li
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Pengcheng Ma
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guocheng Hu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Lijuan Zhang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
2
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Wang W, Zhou C, Ma Z, Zeng L, Wang H, Cheng X, Zhang C, Xue Y, Yuan Y, Li J, Hu L, Huang J, Luo T, Zheng L. Co-exposure to polystyrene nanoplastics and triclosan induces synergistic cytotoxicity in human KGN granulosa cells by promoting reactive oxygen species accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116121. [PMID: 38402792 DOI: 10.1016/j.ecoenv.2024.116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
In recent years, nanoplastics (NPs) and triclosan (TCS, a pharmaceutical and personal care product) have emerged as environmental pollution issues, and their combined presence has raised widespread concern regarding potential risks to organisms. However, the combined toxicity and mechanisms of NPs and TCS remain unclear. In this study, we investigated the toxic effects of polystyrene NPs and TCS and their mechanisms on KGN cells, a human ovarian granulosa cell line. We exposed KGN cells to NPs (150 μg/mL) and TCS (15 μM) alone or together for 24 hours. Co-exposure significantly reduced cell viability. Compared with exposure to NPs or TCS alone, co-exposure increased reactive oxygen species (ROS) production. Interestingly, co-exposure to NPs and TCS produced synergistic effects. We examined the activity of superoxide dismutase (SOD) and catalase (CAT), two antioxidant enzymes; it was significantly decreased after co-exposure. We also noted an increase in the lipid oxidation product malondialdehyde (MDA) after co-exposure. Furthermore, co-exposure to NPs and TCS had a more detrimental effect on mitochondrial function than the individual treatments. Co-exposure activated the NRF2-KEAP1-HO-1 antioxidant stress pathway. Surprisingly, the expression of SESTRIN2, an antioxidant protein, was inhibited by co-exposure treatments. Co-exposure to NPs and TCS significantly increased the autophagy-related proteins LC3B-II and LC3B-Ⅰ and decreased P62. Moreover, co-exposure enhanced CASPASE-3 expression and inhibited the BCL-2/BAX ratio. In summary, our study revealed the synergistic toxic effects of NPs and TCS in vitro exposure. Our findings provide insight into the toxic mechanisms associated with co-exposure to NPs and TCS to KGN cells by inducing oxidative stress, activations of the NRF2-KEAP1-HO-1 pathway, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Wencan Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Chong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangqiang Ma
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Lianjie Zeng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Houpeng Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Xiu Cheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Chenchen Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China
| | - Yue Xue
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yangyang Yuan
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jia Li
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liaoliao Hu
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jian Huang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tao Luo
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Basic Medical College and Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liping Zheng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China.
| |
Collapse
|
4
|
Laue HE, Gilmour AJ, Tirado VM, Romano ME. Conceptualizing the Role of the Microbiome as a Mediator and Modifier in Environmental Health Studies: A Scoping Review of Studies of Triclosan and the Microbiome. Curr Environ Health Rep 2024; 11:30-38. [PMID: 38217674 PMCID: PMC10922364 DOI: 10.1007/s40572-024-00428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Triclosan is an endocrine-disrupting antimicrobial additive that is suspected of contributing to antibiotic resistance and altering the microbiome. In this scoping review, we summarize what is known about the association between triclosan exposure and the microbiome using evidence from in vivo and epidemiologic studies. RECENT FINDINGS Our review includes 11 rodent studies, seven fish studies, and five human studies. Evidence from animal studies suggests that triclosan decreases the diversity of the microbiome, although only one epidemiologic study agreed. Most studies suggest that triclosan alters the microbial community beta diversity, but disagree on which taxa contributed to compositional differences. Taxa in the Bacteroidetes, Firmicutes, and Proteobacteria may be more influenced by triclosan than those in other phyla. Studies on triclosan and the microbiome were scarce and were inconclusive as to the effects of triclosan on the microbiome. Additional research is needed to clarify windows of heightened susceptibility of the microbiome to triclosan. We recommend guidelines for future microbiome research in environmental health to increase comparability across studies.
Collapse
Affiliation(s)
- Hannah E Laue
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, One Medical Center Dr, WTRB 700 HB 7927, Lebanon, NH, 03756, USA.
| | - Aislinn J Gilmour
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
5
|
Chen X, Mou L, Qu J, Wu L, Liu C. Adverse effects of triclosan exposure on health and potential molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163068. [PMID: 36965724 PMCID: PMC10035793 DOI: 10.1016/j.scitotenv.2023.163068] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
With the COVID-19 pandemic, the use of disinfectants has grown significantly around the world. Triclosan (TCS), namely 5-chloro-2-(2,4-dichlorophenoxy) phenol or 2,4,4'-trichloro-2'-hydroxydiphenyl ether, is a broad-spectrum, lipophilic, antibacterial agent that is extensively used in multifarious consumer products. Due to the widespread use and bioaccumulation, TCS is frequently detected in the environment and human biological samples. Accumulating evidence suggests that TCS is considered as a novel endocrine disruptor and may have potential unfavorable effects on human health, but studies on the toxic effect mediated by TCS exposure as well as its underlying mechanisms of action are relatively sparse. Therefore, in this review, we attempted to summarize the potential detrimental effects of TCS exposure on human reproductive health, liver function, intestinal homeostasis, kidney function, thyroid endocrine, and other tissue health, and further explore its mechanisms of action, thereby contributing to the better understanding of TCS characteristics and safety. Moreover, our work suggested the need to further investigate the biological effects of TCS exposure at the metabolic level in vivo.
Collapse
Affiliation(s)
- Xuhui Chen
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Li Mou
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Jiayuan Qu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Liling Wu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China.
| |
Collapse
|
6
|
Daza-Rodríguez B, Aparicio-Marenco D, Márquez-Lázaro J. Association of triclosan and human infertility: A systematic review. Environ Anal Health Toxicol 2023; 38:e2023015-0. [PMID: 37933109 PMCID: PMC10628403 DOI: 10.5620/eaht.2023015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/14/2023] [Indexed: 11/08/2023] Open
Abstract
Triclosan (TCS) is a chemical compound, which has antibacterial, antiviral, and antifungal properties. TCS is considered an endocrine-disrupting chemical, which has been shown to interfere with developmental, behavioral, and reproductive outcomes in biological models and cell cultures. However, implications about exposure to TCS and human infertility are rare. Thus, the main of this review is summarize the available evidence of the association between triclosan exposure on human infertility. For this, systematic review was conducted following the recommendations established in Report of Systematic Reviews and Meta-Analyses guide (PRISMA). Initially, an electronic search in MEDLINE (via PubMed) and Science direct was performed. The methodological quality of the included studies was verified through the Joanna Briggs Institute (JBI) checklists. All selection and data extraction processes were carried out independently by two reviewers. The evidence was organized and presented using tables and narrative synthesis. There is lacking evidence about the association between triclosan and human infertility. Overall, no association between triclosan and infertility was found. However, semen quality and ovarian reserve are susceptible to triclosan exposure. Thus, future studies are still needed to better elucidate the associations between triclosan and infertility outcomes.
Collapse
Affiliation(s)
| | - Dilia Aparicio-Marenco
- GINUMED group, Medicine program, Corporación Universitaria Rafael Núñez, Cartagena, Colombia
| | - Johana Márquez-Lázaro
- GINUMED group, Medicine program, Corporación Universitaria Rafael Núñez, Cartagena, Colombia
- TOXSA group, Medicine program, Corporación Universitaria Rafael Núñez, Cartagena, Colombia
| |
Collapse
|
7
|
Milanović M, Đurić L, Milošević N, Milić N. Comprehensive insight into triclosan-from widespread occurrence to health outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25119-25140. [PMID: 34741734 PMCID: PMC8571676 DOI: 10.1007/s11356-021-17273-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Humans are exposed to the variety of emerging environmental pollutant in everyday life. The special concern is paid to endocrine disrupting chemicals especially to triclosan which could interfere with normal hormonal functions. Triclosan could be found in numerous commercial products such as mouthwashes, toothpastes and disinfectants due to its antibacterial and antifungal effects. Considering the excessive use and disposal, wastewaters are recognized as the main source of triclosan in the aquatic environment. As a result of the incomplete removal, triclosan residues reach surface water and even groundwater. Triclosan has potential to accumulate in sediment and aquatic organisms. Therefore, the detectable concentrations of triclosan in various environmental and biological matrices emerged concerns about the potential toxicity. Triclosan impairs thyroid homeostasis and could be associated with neurodevelopment impairment, metabolic disorders, cardiotoxicity and the increased cancer risk. The growing resistance of the vast groups of bacteria, the evidenced toxicity on different aquatic organisms, its adverse health effects observed in vitro, in vivo as well as the available epidemiological studies suggest that further efforts to monitor triclosan toxicity at environmental levels are necessary. The safety precaution measures and full commitment to proper legislation in compliance with the environmental protection are needed in order to obtain triclosan good ecological status. This paper is an overview of the possible negative triclosan effects on human health. Sources of exposure to triclosan, methods and levels of detection in aquatic environment are also discussed.
Collapse
Affiliation(s)
- Maja Milanović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia.
| | - Larisa Đurić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milošević
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| |
Collapse
|
8
|
Polycystic Ovary Syndrome and Endocrine Disruptors (Bisphenols, Parabens, and Triclosan)-A Systematic Review. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010138. [PMID: 36676087 PMCID: PMC9864804 DOI: 10.3390/life13010138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Exposure to endocrine disrupting chemicals (EDCs) can result in alterations of the female reproductive system, including polycystic ovary syndrome (PCOS). The aim of this review was to summarize the knowledge about the association of EDCs (bisphenols, parabens, and triclosan) with PCOS. We conducted an electronic literature search using PubMed for studies published between January 2007 and October 2022 on EDCs related to PCOS, and evaluated the association of PCOS with bisphenols, parabens and triclosan in 15 articles. Most studies revealed significantly higher plasma, urinary or follicular fluid levels of bisphenol A (BPA) in women with PCOS, and some showed a positive correlation of BPA with insulin resistance, polycystic morphology on ultrasound, hepatic steatosis, bilirubin levels, as well as free androgen index, androstenedione and testosterone serum levels, and markers of low-grade chronic inflammation. There was a negative correlation of BPA with markers of ovarian reserve, sex hormone binding globulin and vitamin D-binding protein. Parabens and triclosan have been studied in only one study each, with no significant associations with PCOS observed. Our review revealed an association of BPA with PCOS and negative effects of BPA on human ovaries; more research is needed to assess the potential associations of parabens and triclosan with PCOS.
Collapse
|
9
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
10
|
de Oliveira LS, da Silva TQM, Barbosa EM, Dos Anjos Cordeiro JM, Santos LC, Henriques PC, Santos BR, Gusmao DDO, de Macedo IO, Szawka RE, Silva JF. Kisspeptin Treatment Restores Ovarian Function in Rats with Hypothyroidism. Thyroid 2022; 32:1568-1579. [PMID: 35765915 DOI: 10.1089/thy.2021.0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Hypothyroidism causes ovarian dysfunction and infertility in women, in addition to being associated with hyperprolactinemia and reduced hypothalamic expression of kisspeptin (Kp). However, it remains unknown whether and how Kp is able to reverse the ovarian dysfunction caused by hypothyroidism. Methods: Hypothyroidism was induced in adult female Wistar rats using 6-propyl-2-thiouracil for 3 months. In the last month, half of the animals received Kp10. Blood samples were collected for dosage of free thyroxine, thyrotropin (TSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2), and uteruses and ovaries were collected for histomorphometry. Body and ovarian weight and the number of corpora lutea were also evaluated. Half of the brains were evaluated by immunohistochemistry to Kp, and the other half had the arcuate nucleus of hypothalamus (ARC) and preoptic area microdissected for gene evaluation of Kiss1, Nkb, Pdyn, and Gnrh1. The pituitary gland and corpora lutea were also dissected for gene evaluation. Results: Hypothyroidism kept the animals predominantly acyclic and promoted a reduction in ovarian weight, number of corpora lutea, endometrial thickness, number of endometrial glands, and plasma LH, in addition to increasing the luteal messenger RNA (mRNA) expression of Star and Cyp11a1 and reducing 20αHsd. An increase in plasma PRL and P4 levels was also caused by hypothyroidism. Kp immunoreactivity and Kiss1 and Nkb mRNA levels in the ARC and Kiss1 in the anteroventral periventricular nucleus of hypothalamus were reduced in hypothyroid rats. Hypothyroid animals had lower pituitary gene expression of Gnrhr, Lhb, Prl, and Drd2, and an increase in Tshb. The treatment with Kp10 restored estrous cyclicality, plasma LH, ovarian and uterine morphology, and Cyp11a1, 3βHsd, and 20αHsd mRNA levels in the corpora lutea. Kp10 treatment did not alter gene expression for Kiss1 or Nkb in the ARC of hypothyroid rats. Nevertheless, Kp10 increased Lhb mRNA levels and reduced Tshb in the pituitary compared with the hypothyroid group. Conclusions: The present findings characterize the inhibitory effects of hypothyroidism on the hypothalamic-pituitary-gonadal axis in female rats and demonstrate that Kp10 is able to reverse the ovarian dysfunction caused by hypothyroidism, regardless of hyperprolactinemia.
Collapse
Affiliation(s)
- Luciana Santos de Oliveira
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | | | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | | | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Patrícia Costa Henriques
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Daniela de Oliveira Gusmao
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| |
Collapse
|
11
|
Arismendi D, Alanis C, Richter P, Paredes AH. Effect of triclosan exposure on ovarian hormones, trace elements and growth in female rats. CHEMOSPHERE 2022; 307:135964. [PMID: 35970220 DOI: 10.1016/j.chemosphere.2022.135964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (TCS) is an antibacterial compound used mainly in personal care products. Its widespread use for decades has made it one of the most widely detected compounds in environmental matrices and in biological fluids. Although it has been shown to be an endocrine disruptor in rats and aquatic species, its safe use by humans is unclear. The aim of the present study was to evaluate the effects of exposure to TCS in female rats. To this end, 14 rats were divided into two groups and fed daily as follows: the control group with sesame oil and the TCS group at a dose of 50 mg/kg/day for 28 days. Any signs of toxicity in the rats were observed daily, and the weight and phase of the estrous cycle were recorded. At the end, the rats were decapitated, the serum and ovaries were collected. The levels of testosterone and progesterone in serum were determined by immunoassay and mass spectrometry. Estradiol (in serum) and kisspeptin-10 (in serum and ovary) were measured only by immunoassays. Trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The weight gain study of the rats showed a significant decrease by exposure to TCS, while the estrous cycle was not significantly affected compared to the control. The optimized methods based on mass spectrometry showed a significant decrease in the levels of progesterone and testosterone due to exposure to TCS. In addition, elements determined by ICP-MS in rat serum showed significant changes in calcium, lithium and aluminum due to TCS treatment. Finally, the kisspeptin-10 levels did not show a negative effect due to the treatment by TCS. The results suggest that medium-term exposure to TCS did not significantly alter estrous cyclicity but caused alterations in growth, sex hormone levels and some elements in the rat serum.
Collapse
Affiliation(s)
- Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Constanza Alanis
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Alfonso H Paredes
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
12
|
Beroukhim G, Kayani J, Taylor HS, Pal L. Implications of triclosan for female fertility: results from the National Health and Nutrition Examination Survey, 2013-2016. F S Rep 2022; 3:204-210. [PMID: 36212563 PMCID: PMC9532887 DOI: 10.1016/j.xfre.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
Abstract
Objective To examine and further characterize the association between urinary levels of triclosan (TCS), a ubiquitous putative endocrine-disrupting chemical, and the risk of infertility. Design A retrospective cross-sectional study using the Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey. Setting Not applicable. Patients Female participants in the United States who completed the reproductive health questionnaire and provided urine samples for TCS level measurement from 2013 to 2016. Interventions None. Main Outcome Measures Rates of presumed infertility based on participants' affirmative response to survey question RHQ074 ("Have you ever attempted to become pregnant over a period of at least a year without becoming pregnant?"). Results A total of 11.7% of the overall female and 12.5% of the eligible study population met the criterion for presumed infertility. Creatinine-adjusted urinary TCS levels were significantly higher among those meeting the criterion for infertility compared with the levels among those who did not. On multivariable-adjusted analyses, individuals with undetectable levels of urinary TCS were 35% less likely to meet the specified infertility criterion compared with those with detectable TCS levels. The magnitude of association between TCS levels and infertility was strongest when comparing the lowest and highest quartiles. The directionality and magnitude of the relationship between TCS levels and infertility were maintained on age-restricted and weighted analyses; however, the associations did not retain statistical significance. Conclusions In a nationally representative sample of women in the United States, an association between TCS exposure and inability to conceive over a period of 1 year is suggested by our analysis of the National Health and Nutrition Examination Survey data. The data infer a dose-response relationship.
Collapse
Affiliation(s)
- Gabriela Beroukhim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Reprint requests: Gabriela Beroukhim, M.D., Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar Street, FMB 329H, Yale School of Medicine, New Haven, Connecticut 06510.
| | | | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Lubna Pal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|
14
|
Yin X, Di T, Cao X, Liu Z, Xie J, Zhang S. Chronic exposure to perfluorohexane sulfonate leads to a reproduction deficit by suppressing hypothalamic kisspeptin expression in mice. J Ovarian Res 2021; 14:141. [PMID: 34706750 PMCID: PMC8555149 DOI: 10.1186/s13048-021-00903-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Perfluorohexane sulfonate (PFHxS) is a six-carbon perfluoroalkyl sulfonic acid found as an environmental contaminant. This study aims to investigate the effects of PFHxS exposure on female reproduction and the underlying mechanism in mice. Methods Eight-week-old ICR mice were divided randomly into four groups administered corn oil (vehicle) and PFHxS at doses of 0.5, 5, and 50 mg/kg/day for 42 days by intragastric administration. Body weight, ovarian weight, estrous cycle, follicle counts, and serum sex hormone levels were evaluated. The expression of kisspeptin and gonadotropin releasing hormone (GnRH) in the hypothalamus was also detected. Results Compared to vehicle exposure, 5 mg/kg/day PFHxS treatment prolonged the estrous cycle, especially the duration of diestrus, after 42 days of treatment. The numbers of secondary follicles, antral follicles and corpus lutea were significantly reduced in the PFHxS-treated mice. Moreover, compared with the control mice, the PFHxS-treated mice showed decreases in the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estrogen (E2), and reduced GnRH mRNA levels, along with the lack of an LH surge. Furthermore, the PFHxS-treated mice had lower levels of kisspeptin immunoreactivity and kiss-1 mRNA in the arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV) than the control mice. After intraventricular administration of kisspeptin-10, the numbers of secondary follicles, antral follicles and corpus lutea recovered, along with the levels of GnRH mRNA, FSH, and LH in the mice treated with 5 mg/kg/day PFHxS. Conclusion These results indicate that chronic exposure of mice to 5 mg/kg/day PFHxS affects reproductive functions by inhibiting kisspeptin expression in the ARC and AVPV regions, leading to deficits in follicular development and ovulation. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00903-z.
Collapse
Affiliation(s)
- Xiaorui Yin
- Department of Obstetrics and Gynecology, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210006, China
| | - Tingting Di
- Department of Pharmacology, Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, China
| | - Xinyuan Cao
- Experimental Teaching Center of Basic Medicine, Nanjing Medical University, Nanjing, 210006, China
| | - Zhengnan Liu
- Department of Obstetrics and Gynecology, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210006, China
| | - Jingyan Xie
- Department of Obstetrics and Gynecology, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210006, China.
| | - Suyun Zhang
- Department of Obstetrics and Gynecology, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, 210006, China.
| |
Collapse
|
15
|
Mandour DA, Aidaros AAM, Mohamed S. Potential long-term developmental toxicity of in utero and lactational exposure to Triclocarban (TCC) in hampering ovarian folliculogenesis in rat offspring. Acta Histochem 2021; 123:151772. [PMID: 34428603 DOI: 10.1016/j.acthis.2021.151772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Triclocarban (TCC), an antimicrobial compound commonly added to a wide range of household and personal hygiene care products, is one of the most prevalent endocrine-disrupting substances (EDS). This study was conducted to elucidate whether in utero and lactational exposure to TCC could adversely affect folliculogenesis and the onset of puberty in female rat offspring. Twenty pregnant Sprague Dawley rats were equally divided into Control and TCC dam groups (supplemented daily with drinking water enriched with 0.5 mg/L of TCC) from gestational day5 to postnatal day21 (PND21). Female offspring, 20 from control and 20 from TCC dams, were subdivided into 4 subgroups (PND21, PND28, PND35 & PND42). The day of vaginal opening and first estrous cycle were determined. Ovarian sections of the offspring were processed for H&E staining and for immunohistochemical expression of Ki67, Caspase-3 and androgen receptors (AR) on the granulosa cells of ovarian follicles. Follicular count and atretic index were assessed besides, serum estradiol, progesterone, FSH and LH, C-reactive protein (CRP), malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. TCC offspring exhibited a significant delay in the onset of puberty and impedance of normal transition of the primordial follicles to more developed ones with altered cyctoarchitecture. Also, TCC decreased follicular count, proliferation and gonado-somatic index while it increased atretic index, apoptosis and AR of the granulosa cells along with disturbance of the feminine hormonal profile and oxidant/antioxidant balance. This study highlighted the potential long-term consequences of in utero and lactational exposure to TCC on the postnatal development of the ovary in rat offspring.
Collapse
Affiliation(s)
- Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt.
| | - Abd Al-Mawla Aidaros
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| | - Soad Mohamed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
16
|
Huang W, Zhu L, Cao G, Xie P, Song Y, Huang J, Chen X, Cai Z. Integrated Proteomics and Metabolomics Assessment Indicated Metabolic Alterations in Hypothalamus of Mice Exposed to Triclosan. Chem Res Toxicol 2021; 34:1319-1328. [PMID: 33611912 DOI: 10.1021/acs.chemrestox.0c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triclosan (TCS) is a ubiquitous antimicrobial used in many daily consumer products. It has been reported to induce endocrine disrupting effects at low doses in mammals, disturbing sex hormone function and thyroid function. The hypothalamus plays a crucial role in the maintenance of neuroendocrine function and energy homeostasis. We speculated that the adverse effects of TCS might be related to the disturbance of metabolic processes in hypothalamus. The present study aimed at investigating the effects of TCS exposure on the protein and metabolite profiles in hypothalamus of mice. Male C57BL/6 mice were orally exposed to TCS at the dosage of 10 mg/kg/d for 13 weeks. The hypothalamus was isolated and processed for mass spectrometry (MS)-based proteomics and metabolomics analyses. The results showed that a 10.6% decrease (P = 0.066) in body weight gain was observed in the TCS exposure group compared with vehicle control group. Differential analysis defined 52 proteins and 57 metabolites that delineated TCS exposed mice from vehicle controls. Among the differential features, multiple proteins and metabolites were found to play vital roles in neuronal signaling and function. Bioinformatics analysis revealed that these differentially expressed proteins and metabolites were involved in four major biological processes, including glucose metabolism, purine metabolism, neurotransmitter release, and neural plasticity, suggesting the disturbance of homeostasis in energy metabolism, mitochondria function, neurotransmitter system, and neuronal function. Our results may provide insights into the neurotoxicity of TCS and extend our understanding of the biological effects induced by TCS exposure.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.,School of Environment, Jinan University, Guangzhou 510632, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jialing Huang
- School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, Shandong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
17
|
Chen D, Liu J, Yan W, Fang K, Xia Y, Lv W, Shi Z. Associations of Prenatal Exposure to Triclosan and Maternal Thyroid Hormone Levels: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 11:607055. [PMID: 33519715 PMCID: PMC7839534 DOI: 10.3389/fendo.2020.607055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To quantitatively evaluate associations between exposure to triclosan during pregnancy and maternal thyroid hormone levels. METHOD The databases of PubMed, Embase, Web of Science and Cochrane Library were systematically searched to identify relevant studies on the relationship between prenatal exposure to triclosan and maternal levels of serum thyroid hormone published before October 22, 2019. Stata 12.0 was used to examine the heterogeneity among the eligible studies. RESULTS Seven studies involving a total of 4,136 participants were included. Overall, descriptive analysis provided no indication that exposure to TCS during pregnancy was related to either maternal FT4 levels (ES = 0.01, 95% CI: -0.03 to 0.05, P = 0.00) or TSH levels (ES = -0.03, 95% CI: -0.13 to 0.07, P = 0.412). Although the results were statistically insignificant, with the increase of urine TCS concentration, maternal FT4 levels exhibited a tendency to increase while TSH levels had a tendency to decrease during pregnancy. CONCLUSION The results indicated that exposure to triclosan during pregnancy has no significant influence on maternal levels of thyroid hormone. On account of the inconsistency of existing research designs and study locations, further studies and replication are necessary to confirm these findings.
Collapse
Affiliation(s)
- Danrong Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiani Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wu Yan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kacey Fang
- Department of Cognitive Science, Yale University, New Haven, CT, United States
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Lv
- Healthcare Management Program, School of Business, Nanjing University, Nanjing, China
| | - Zhonghua Shi
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
18
|
Kenda M, Karas Kuželički N, Iida M, Kojima H, Sollner Dolenc M. Triclocarban, Triclosan, Bromochlorophene, Chlorophene, and Climbazole Effects on Nuclear Receptors: An in Silico and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107005. [PMID: 33064576 PMCID: PMC7567334 DOI: 10.1289/ehp6596] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals can interfere with hormonal homeostasis and have adverse effects for both humans and the environment. Their identification is increasingly difficult due to lack of adequate toxicological tests. This difficulty is particularly problematic for cosmetic ingredients, because in vivo testing is now banned completely in the European Union. OBJECTIVES The aim was to identify candidate preservatives as endocrine disruptors by in silico methods and to confirm endocrine receptors' activities through nuclear receptors in vitro. METHODS We screened preservatives listed in Annex V in the European Union Regulation on cosmetic products to predict their binding to nuclear receptors using the Endocrine Disruptome and VirtualToxLab™ version 5.8 in silico tools. Five candidate preservatives were further evaluated for androgen receptor (AR), estrogen receptor (ER α ), glucocorticoid receptor (GR), and thyroid receptor (TR) agonist and antagonist activities in cell-based luciferase reporter assays in vitro in AR-EcoScreen, hER α -HeLa- 9903 , MDA-kb2, and GH3.TRE-Luc cell lines. Additionally, assays to test for false positives were used (nonspecific luciferase gene induction and luciferase inhibition). RESULTS Triclocarban had agonist activity on AR and ER α at 1 μ M and antagonist activity on GR at 5 μ M and TR at 1 μ M . Triclosan showed antagonist effects on AR, ER α , GR at 10 μ M and TR at 5 μ M , and bromochlorophene at 1 μ M (AR and TR) and at 10 μ M (ER α and GR). AR antagonist activity of chlorophene was observed [inhibitory concentration at 50% (IC50) IC 50 = 2.4 μ M ], as for its substantial ER α agonist at > 5 μ M and TR antagonist activity at 10 μ M . Climbazole showed AR antagonist (IC 50 = 13.6 μ M ), ER α agonist at > 10 μ M , and TR antagonist activity at 10 μ M . DISCUSSION These data support the concerns of regulatory authorities about the endocrine-disrupting potential of preservatives. These data also define the need to further determine their effects on the endocrine system and the need to reassess the risks they pose to human health and the environment. https://doi.org/10.1289/EHP6596.
Collapse
Affiliation(s)
- Maša Kenda
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | | | | | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | |
Collapse
|
19
|
Liu B, Li N, Zhang J, Liu Y, Zhang M, Hong Y, Wu W, Zhang X, Duan G. The Role of Voltage-Gated Sodium Channel 1.8 in the Effect of Atropine on Heart Rate: Evidence From a Retrospective Clinical Study and Mouse Model. Front Pharmacol 2020; 11:1163. [PMID: 32848771 PMCID: PMC7412993 DOI: 10.3389/fphar.2020.01163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Atropine is commonly used to counter the effects of the parasympathetic neurotransmitter acetylcholine on heart rate in clinical practice, such as in the perioperative period; however, individual differences in the response to atropine are huge. The association between SCN10A/voltage-gated sodium channel 1.8 (NaV1.8) and cardiac conduction has been demonstrated; however, the exact role of SCN10A/NaV1.8 in the heart rate response to atropine remains unclear. To identify the role of SCN10A variants that influence the heart rate responses to atropine, we carried out a retrospective study in 1,005 Han Chinese subjects. Our results showed that rs6795970 was associated with the heart rate response to atropine. The heart rate responses to atropine and methoctramine in NaV1.8 knockout mice were lower, whereas the heart rate response to isoproterenol was like those in wild type mice. Furthermore, we observed that the NaV1.8 blocker A-803467 alleviated the heart rate response to atropine in wild type mice. The retrospective study revealed a previously unknown role of NaV1.8 in controlling the heart rate response to atropine, as shown by the animal study, a speculative mechanism that may involve the cardiac muscarinic acetylcholine receptor M2.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yishun Hong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xianwei Zhang, ; Guangyou Duan,
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Xianwei Zhang, ; Guangyou Duan,
| |
Collapse
|
20
|
Zhang Z, Tang J, Di R, Liu Q, Wang X, Gan S, Zhang X, Zhang J, Chu M, Hu W. Integrated Hypothalamic Transcriptome Profiling Reveals the Reproductive Roles of mRNAs and miRNAs in Sheep. Front Genet 2020; 10:1296. [PMID: 32010181 PMCID: PMC6974689 DOI: 10.3389/fgene.2019.01296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Early studies have provided a wealth of information on the functions of microRNAs (miRNAs). However, less is known regarding their functions in the hypothalamus involved in sheep reproduction. To explore the potential roles of hypothalamic messenger RNAs (mRNAs) and miRNAs in sheep without FecB mutation, in total, 172 and 235 differentially expressed genes (DEGs) and 42 and 79 differentially expressed miRNAs (DE miRNAs) were identified in polytocous sheep in the follicular phase versus monotocous sheep in the follicular phase (PF vs. MF) and polytocous sheep in the luteal phase versus monotocous sheep in the luteal phase (PL vs. ML), respectively, using RNA sequencing. We also identified several key mRNAs (e.g., POMC, GNRH1, PRL, GH, TRH, and TTR) and mRNA–miRNAs pairs (e.g., TRH co-regulated by oar-miR-379-5p, oar-miR-30b, oar-miR-152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-miR-218a, oar-miR-148a, and PRL regulated by oar-miR-432) through functional enrichment analysis, and the identified mRNAs and miRNAs may function, conceivably, by influencing gonadotropin-releasing hormone (GnRH) activities and nerve cell survival associated with reproductive hormone release via direct and indirect ways. This study represents an integral analysis between mRNAs and miRNAs in sheep hypothalamus and provides a valuable resource for elucidating sheep prolificacy.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
In vitro metabolism of triclosan studied by liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem 2019; 412:335-342. [PMID: 31788715 DOI: 10.1007/s00216-019-02239-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
Triclosan (TCS) is an antibacterial and antifungal compound found in many hygiene products, including toothpaste, soap, and detergents. However, this molecule can act as an endocrine disruptor and can induce harmful effects on human health and the environment. In this study, triclosan was biotransformed in vitro using human and rat liver fractions, to evaluate oxidative metabolism, the formation of reactive metabolites via the detection of GSH adducts, as well as glucuronide and sulfate conjugates using liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-HRMS/MS). A deuterated analog of triclosan was also employed for better structural elucidation of specific metabolic sites. Several GSH adducts were found, either via oxidative metabolism of triclosan or its cleavage product, 2,4-dichlorophenol. We also detected glucuronide and sulfated conjugates of triclosan and its cleaved product. This study was aimed at understanding the routes of detoxification of this xenobiotic, as well as investigating any potential pathways related to additional toxicity via reactive metabolite formation. Graphical abstract.
Collapse
|
22
|
Yao K, Wang J, Ren Z, Zhang Y, Wen K, Shao B, Jiang H. Development of a Novel Monoclonal Antibody–Based Indirect Competitive ELISA with Immunoaffinity Cleanup for the Detection of Triclosan in Chickens. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
LI C, DAI J, WU F, ZHANG H. Impacts of Different Anesthetic Agents on Left Ventricular Systolic Function in Mice Assessed by Echocardiography. Physiol Res 2019; 68:365-374. [DOI: 10.33549/physiolres.933940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The present experiments were performed to study the effects and time trends of different anesthetic agents on the left ventricular (LV) systolic function and heart rate by high-resolution echocardiography in mice. Ten male C57BL/6J mice were submitted to echocardiography imaging separated by 72-hour intervals under the following conditions: 1) conscious mice, 2) mice anesthetized with isoflurane (ISO, inhaled), 3) mice anesthetized with tribromoethanol (TBE, intraperitoneal), 4) mice anesthetized with chloral hydrate (CH, intraperitoneal), and 5) mice anesthetized with pentobarbital sodium (PS, intraperitoneal). The effect of ISO, TBE, CH, and PS on LV systolic function was measured at 0, 1, 2, 3, 4, 6, 8, and 10 min after anesthesia. The results showed that LV systolic function and heart rate (HR) of anesthetized mice were reduced significantly (P<0.05), compared with results in the same mice studied in the conscious state. In addition, the results indicated that the anesthetic with the least effect on LV function was CH, and followed by TBE, PS, ISO. We conclude that different anesthetic agents always depressed the HR and LV systolic function of mice, and, furthermore, the effects and time trends of different anesthetics on LV function are different. In echocardiographic experiments, we should choose proper anesthetic agents according to the experimental requirements.
Collapse
Affiliation(s)
- C. LI
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - J. DAI
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang, Hebei, China
| | - F. WU
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - H. ZHANG
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|