1
|
Mansour RM, Shaker AAS, Abulsoud AI, Mageed SSA, Ashraf A, Elsakka EGE, Dahab MI, Sadek MM, Awad FA, Lutfy RH, Elimam H, Faraag AHI, Nassar YA, Ali MA, Mohammed OA, Abdel-Reheim MA, Doghish AS. The Role of MicroRNAs in Neurodegeneration: Insights from Huntington's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04750-7. [PMID: 40009259 DOI: 10.1007/s12035-025-04750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
MicroRNA (miRNAs) is a single non-coding strand with a small sequence of approximately 21-25 nucleotides, which could be a biomarker or act as a therapeutic agent for disease. This review explores the dynamic role of miRNAs in Huntington's disease (HD), encompassing their regulatory function, potential as diagnostic biomarker tools, and emerging therapeutic applications. We delved into the dysregulation of specific miRNAs in HD, for instance, downregulated levels of miR-9 and miR-124 and increased levels of miR-155 and miR-196a. These alterations highlight the promise of miRNAs as non-invasive tools for early HD detection and disease progression monitoring. Moving beyond diagnosis, the exciting potential of miRNA-based therapies. By mimicking downregulated miRNAs or inhibiting dysregulated ones, we can potentially restore the balance of mutant target gene expression and modify disease progression. Recent research using engineered miRNAs delivered via an adeno-associated virus (AAV) vector in a transgenic HD minipig model demonstrates encouraging results in reducing mutant HD and improving motor function.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, 11829, Badr City, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt
| | - Mohammed I Dahab
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat, 32897, Sadat City, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
- Botany and Microbiology Department, Faculty of Science, Helwan University, 11795, Helwan, Egypt
| | - Yara A Nassar
- Department of Botany, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), 11829, Badr City, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, 11231, Nasr City, Cairo, Egypt.
| |
Collapse
|
2
|
Joshi DC, Chavan MB, Gurow K, Gupta M, Dhaliwal JS, Ming LC. The role of mitochondrial dysfunction in Huntington's disease: Implications for therapeutic targeting. Biomed Pharmacother 2025; 183:117827. [PMID: 39854819 DOI: 10.1016/j.biopha.2025.117827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease. HD is caused by a CAG repeat expansion in the huntingtin gene, which leads to the production of a toxic mutant huntingtin (mHTT) protein. This disruption in mitochondrial function compromises energy metabolism and increases oxidative stress, resulting in mitochondrial DNA abnormalities, impaired calcium homeostasis, and altered mitochondrial dynamics. These effects ultimately may contribute to neuronal dysfunction and cell death, underscoring the importance of targeting mitochondrial function in developing therapeutic strategies for HD. This review discusses the mechanistic role of mitochondrial dysfunction in Huntington's disease. Mitochondrial dysfunction is a crucial factor in HD, making mitochondrial-targeted therapies a promising approach for treatment. We explore therapies that address bioenergy deficits, antioxidants that reduce reactive oxygen species, calcium modulators that restore calcium homeostasis, and treatments that enhance mitochondrial dynamics to rejuvenate mitochondrial function. We also highlight innovative treatment approaches such as gene editing and stem cell therapy, which offer hope for more personalized strategies. In conclusion, understanding mitochondrial dysfunction in Huntington's disease may guide potential treatment strategies. Targeting this dysfunction may help to slow disease progression and enhance the quality of life for individuals affected by Huntington's disease.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Mayuri Bapu Chavan
- TMV's Lokmanya Tilak Institute of Pharmaceutical Sciences, Pune, Maharashtra, India.
| | - Kajal Gurow
- Department of Pharmacology, Gurukul Pharmacy college, Ranpur, Kota, Rajasthan, India
| | - Madhu Gupta
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India.
| | | | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India.
| |
Collapse
|
3
|
Tandon S, Sarkar S. Myc functions downstream of InR and their concurrent upregulation additively restricts pathogenesis of human poly(Q) disorders in Drosophila disease models. Int J Biochem Cell Biol 2024; 177:106690. [PMID: 39521038 DOI: 10.1016/j.biocel.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Human polyglutamine [poly(Q)] disorders are caused by abnormal expansion of CAG repeats in one gene (disease specific), yet a plethora of cellular pathways are found to be involved in their pathogenesis and progression. Despite the tremendous effort, all pursuits for the development of intervention therapy against these disorders seem futile. Recent reports suggest combination therapy as a potential strategy to combat the complex pathogenesis of such neurodegenerative disorders. The present study attempted to identify a combinatorial intervention strategy against human poly(Q) disorders in Drosophila disease models. Due to its immense potential to be stimulated by drugs, the evolutionarily conserved insulin signalling cascade which is well-established modifier of human poly(Q) pathogenesis was selected for the study. Genetic screening studies identified Drosophila Myc as a potential partner of insulin receptor (InR) that conferred additive rescue against poly(Q) induced neurodegeneration. Comprehensive analyses demonstrated InR and Myc to confer additive rescue against several events of pathogenesis, including aggregation of expanded poly(Q) containing proteins, transcriptional dysregulation, upsurge of cell death cascades, etc. Also, the synergistic rescue efficiency of InR and Myc was equally efficient in mitigating poly(Q) induced structural and functional deficits. The study also demonstrates that Myc functions downstream of InR signalling cascade to deliver rescue against human poly(Q) mediated toxicity in Drosophila disease models. In conclusion, the present study suggests that InR and Myc have the potential to be developed as a combinatorial therapeutic approach against human poly(Q) diseases.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
4
|
Zubkova AE, Yudkin DV. Regulation of HTT mRNA Biogenesis: The Norm and Pathology. Int J Mol Sci 2024; 25:11493. [PMID: 39519046 PMCID: PMC11546943 DOI: 10.3390/ijms252111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the HTT gene, leading to the formation of a toxic variant of the huntingtin protein. It is a rare but severe hereditary disease for which no effective treatment method has been found yet. The primary therapeutic targets include the mutant protein and the mutant mRNA of HTT. Current clinical trial approaches in gene therapy involve the application of splice modulation, siRNA, or antisense oligonucleotides for RNA-targeted knockdown of HTT. However, these approaches do not take into account the diversity of HTT transcript isoforms in the normal conditions and in HD. In this review, we discuss the features of transcriptional regulation and processing that lead to the formation of various HTT mRNA variants, each of which may uniquely contribute to the progression of the disease. Furthermore, understanding the role of known transcription factors of HTT in pathology may aid in the development of potentially new therapeutic tools based on endogenous regulators.
Collapse
Affiliation(s)
- Alexandra E. Zubkova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry V. Yudkin
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
| |
Collapse
|
5
|
Chongtham A, Agrawal N. Neuroprotective Potential of Eugenol in Polyglutamine-Mediated Neurodegenerative Disease Using Transgenic Drosophila Model. Dose Response 2024; 22:15593258241291652. [PMID: 39410958 PMCID: PMC11475233 DOI: 10.1177/15593258241291652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Polyglutamine (PolyQ) diseases including Huntington's disease are devastating neurodegenerative disorders characterized by progressive neuronal loss and motor dysfunction. PolyQ pathology involves multiple cellular events and phytochemicals with multi-target mechanisms hold promise to treat these diseases with least side effects. One such promising phytochemical is Eugenol, which possesses antioxidant and anti-inflammatory properties, potentially targeting disrupted cellular pathways in PolyQ diseases. The present study investigated the effects of Eugenol on neurodegeneration and motor dysfunction in transgenic Drosophila models of PolyQ diseases. In this study, the robust pseudopupil assay was performed to analyze adult photoreceptor neuron degeneration, a marker of widespread degenerative events. Furthermore, the well-established crawling and climbing assays were conducted to evaluate progressive motor dysfunction in the PolyQ larvae and flies. This study found that Eugenol administration at disease onset or after progression reduced PolyQ disease phenotypes, particularly, neurodegeneration and motor dysfunction in a dose-dependent manner and with no side effects. Thus, this study suggests that Eugenol could be a viable candidate for developing treatments for PolyQ diseases, offering a multi-target approach with the potential for minimal or no side effects compared to conventional therapies.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Zoology, University of Delhi, Delhi, India
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
7
|
Cui ZT, Mao ZT, Yang R, Li JJ, Jia SS, Zhao JL, Zhong FT, Yu P, Dong M. Spinocerebellar ataxias: from pathogenesis to recent therapeutic advances. Front Neurosci 2024; 18:1422442. [PMID: 38894941 PMCID: PMC11185097 DOI: 10.3389/fnins.2024.1422442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Spinocerebellar ataxia is a phenotypically and genetically heterogeneous group of autosomal dominant-inherited degenerative disorders. The gene mutation spectrum includes dynamic expansions, point mutations, duplications, insertions, and deletions of varying lengths. Dynamic expansion is the most common form of mutation. Mutations often result in indistinguishable clinical phenotypes, thus requiring validation using multiple genetic testing techniques. Depending on the type of mutation, the pathogenesis may involve proteotoxicity, RNA toxicity, or protein loss-of-function. All of which may disrupt a range of cellular processes, such as impaired protein quality control pathways, ion channel dysfunction, mitochondrial dysfunction, transcriptional dysregulation, DNA damage, loss of nuclear integrity, and ultimately, impairment of neuronal function and integrity which causes diseases. Many disease-modifying therapies, such as gene editing technology, RNA interference, antisense oligonucleotides, stem cell technology, and pharmacological therapies are currently under clinical trials. However, the development of curative approaches for genetic diseases remains a global challenge, beset by technical, ethical, and other challenges. Therefore, the study of the pathogenesis of spinocerebellar ataxia is of great importance for the sustained development of disease-modifying molecular therapies.
Collapse
Affiliation(s)
- Zi-Ting Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zong-Tao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jia-Jia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan-Shan Jia
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jian-Li Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fang-Tian Zhong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Bonsor M, Ammar O, Schnoegl S, Wanker EE, Silva Ramos E. Polyglutamine disease proteins: Commonalities and differences in interaction profiles and pathological effects. Proteomics 2024; 24:e2300114. [PMID: 38615323 DOI: 10.1002/pmic.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.
Collapse
Affiliation(s)
- Megan Bonsor
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orchid Ammar
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
9
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
10
|
Nassar A, Satarker S, Gurram PC, Upadhya D, Fayaz SM, Nampoothiri M. Repressor Element-1 Binding Transcription Factor (REST) as a Possible Epigenetic Regulator of Neurodegeneration and MicroRNA-Based Therapeutic Strategies. Mol Neurobiol 2023; 60:5557-5577. [PMID: 37326903 PMCID: PMC10471693 DOI: 10.1007/s12035-023-03437-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Neurodegenerative disorders (NDD) have grabbed significant scientific consideration due to their fast increase in prevalence worldwide. The specific pathophysiology of the disease and the amazing changes in the brain that take place as it advances are still the top issues of contemporary research. Transcription factors play a decisive role in integrating various signal transduction pathways to ensure homeostasis. Disruptions in the regulation of transcription can result in various pathologies, including NDD. Numerous microRNAs and epigenetic transcription factors have emerged as candidates for determining the precise etiology of NDD. Consequently, understanding by what means transcription factors are regulated and how the deregulation of transcription factors contributes to neurological dysfunction is important to the therapeutic targeting of pathways that they modulate. RE1-silencing transcription factor (REST) also named neuron-restrictive silencer factor (NRSF) has been studied in the pathophysiology of NDD. REST was realized to be a part of a neuroprotective element with the ability to be tuned and influenced by numerous microRNAs, such as microRNAs 124, 132, and 9 implicated in NDD. This article looks at the role of REST and the influence of various microRNAs in controlling REST function in the progression of Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) disease. Furthermore, to therapeutically exploit the possibility of targeting various microRNAs, we bring forth an overview of drug-delivery systems to modulate the microRNAs regulating REST in NDD.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
11
|
Tandon S, Sarkar S. Glipizide ameliorates human poly(Q) mediated neurotoxicity by upregulating insulin signalling in Drosophila disease models. Biochem Biophys Res Commun 2023; 645:88-96. [PMID: 36680941 DOI: 10.1016/j.bbrc.2023.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Increasing reports suggest insulin signalling pathway as a putative drug target against polyglutamine [poly(Q)] disorders, such as Huntington's disease (HD), Spinocerebellar ataxias (SCA) 1, 2, 3 etc. However, studies on drug-based stimulation of insulin signalling cascade to mitigate poly(Q) pathogenesis are lacking. In our study, we adopted an evidence-based approach to examine if some established insulin stimulating drug can be utilized to restrict poly(Q) aetiology in Drosophila disease models. For the first time, we report that glipizide, an FDA approved anti-diabetic drug upregulates insulin signalling in poly(Q) expressing tissues and restricts formation of inclusion bodies and neurodegeneration. Moreover, it reinstates the chromatin architecture by improving histone acetylation, which is otherwise abrogated due to poly(Q) toxicity. In view of the functional conservation of insulin signalling pathway in Drosophila and humans, our finding strongly suggests that glipizide can be repurposed as an effective treatment strategy against the neurodegenerative poly(Q) disorders. Also, with appropriate validation studies in mammalian disease models, glipizide could be subsequently considered for the clinical trials in human patients.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India.
| |
Collapse
|
12
|
Chandolia P, Rahi V, Kumar P. Neuroprotective effect of silymarin against 3-Nitropropionic acid-induced neurotoxicity in rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100130. [PMID: 36568269 PMCID: PMC9780065 DOI: 10.1016/j.crphar.2022.100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 12/27/2022] Open
Abstract
(HD) Huntington's disease is a severe hereditary catastrophic neurological disease with an autosomal dominant heritable changes manifested by cognitive, behavioural, and motor progression deficits, resulting in death. Several mechanisms are involved in the pathogenesis of this complex and rare disease, including excitotoxicity, mitochondrial dysfunction, neurotransmitters imbalance, and oxidative stress. Silymarin was selected as an investigational drug, due to its numerous activities in current research, it possesses substantial antioxidant and neuroprotective functionalities. The present research attempts, i.p. injections of 3-NPA (10 mg/kg) were given for 21 days to trigger Huntington-like symptoms in rats. The percentage fluctuations in body weight, the footfall counts, and the time required to transverse the beam and motor functions were analyzed at multiple time points. Oxidative stress markers like MDA/LPO, GSH, protein, nitrite, catalase, and superoxide dismutase levels were examined in the striatum region. The current study results conclusively demonstrate that chronic 3-NPA administration significantly decreased the body weight and showed marked abnormalities in motor coordination, locomotion, and increased striatal generation of free radicals. Furthermore, treatment with silymarin (100 & 200 mg/kg/p.o.), mitigated 3-NPA triggered behavioural and biochemical alterations. Our study results could conclude that Silymarin may be advantageous and might develop an adjuvant treatment for the management of Huntington's disease.
Collapse
Affiliation(s)
- Priyanka Chandolia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India,Corresponding author. Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
13
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
14
|
Arginine methylation by PRMT2 promotes IFN-β production through TLR4/IRF3 signaling pathway. Mol Immunol 2021; 139:202-210. [PMID: 34583098 DOI: 10.1016/j.molimm.2021.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
A balance between the positive and negative regulation of toll-like receptor (TLR) signaling pathways is required to avoid detrimental and inappropriate inflammatory responses. Although some protein post-translational modifications (PTMs) such as phosphorylation and ubiquitination have been demonstrated to potently modulate innate immune responses, the role of methylation, an important PTM, control of TLR4 signaling pathway remains unclear. In this study, we found that protein arginine methyltransferase 1, 2 and 3 (PRMT1, 2 and 3) were recruited to methylate TLR4-CD (cytoplasmic domain) after lipopolysaccharide (LPS) stimulation respectively, but the effect of PRMT2 on arginine methylation of TLR4-CD is the most significant among above three PRMTs, which prompted us to focus on PRMT2. Reduction of PRMT2 expression down-regulated arginine (R) methylation level of TLR4 with or without LPS treatment. Methionine 115 (M115) mediated PRMT2 catalyzed-arginine methylation of TLR4 on R731 and R812. Furthermore, PRMT1, 2 and 3 was recruited to methylate interferon regulatory factor 3 (IRF3) after LPS stimulation respectively, but the effect of PRMT2 on arginine methylation of IRF3 is the most significant among the above three PRMTs. Arginine methylation of TLR4 on R812 or arginine methylation of IRF3 on R285 mediated the interaction between TLR4 and IRF3 respectively. Arginine methylation of IRF3 on R285 induced by LPS led to its dimerization and promoted its translocation from the cytoplasm to the nucleus. In addition, the enhancement of arginine methylation of TLR4 induced by PRMT1 or 2 increased IRF3 transcription activity with or without LPS treatment, while PRMT2 with histidine 112 glutamine (H112Q) or methionine 115 isoleucine (M115I) mutation and TLR4 with arginine 812 lysine (R812K) mutation decreased it. Arginine methylation of TLR4 on R812 or PRMT2 enhanced interferon-β (IFN-β) production. Our study reveals a critical role for PRMT2 and protein arginine methylation in the enhancement of IFN-β production via TLR4/IRF3 signaling pathway and may provide a therapeutic strategy to control endotoxemia.
Collapse
|
15
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
16
|
Raj K, Akundi RS. Mutant Ataxin-3-Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder. Mol Neurobiol 2021; 58:3095-3118. [PMID: 33629274 DOI: 10.1007/s12035-021-02314-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of SCA worldwide caused by abnormal polyglutamine expansion in the coding region of the ataxin-3 gene. Ataxin-3 is a multi-faceted protein involved in various cellular processes such as deubiquitination, cytoskeletal organisation, and transcriptional regulation. The presence of an expanded poly(Q) stretch leads to altered processing and misfolding of the protein culminating in the production of insoluble protein aggregates in the cell. Various post-translational modifications affect ataxin-3 fibrillation and aggregation. This review provides an exhaustive assessment of the various pathogenic mechanisms undertaken by the mutant ataxin-3-containing aggregates (MATAGGs) for disease induction and neurodegeneration. This includes in-depth discussion on MATAGG dynamics including their formation, role in neuronal pathogenesis, and the debate over the toxic v/s protective nature of the MATAGGs in disease progression. Additionally, the currently available therapeutic strategies against SCA3 have been reviewed. The shift in the focus of such strategies, from targeting the steps that lead to or reduce aggregate formation to targeting the expression of mutant ataxin-3 itself via RNA-based therapeutics, has also been presented. We also discuss the intriguing promise that various growth and neurotrophic factors, especially the insulin pathway, hold in the modulation of SCA3 progression. These emerging areas show the newer directions through which SCA3 can be targeted including various preclinical and clinical trials. All these advances made in the last three decades since the discovery of the ataxin-3 gene have been critically reviewed here.
Collapse
Affiliation(s)
- Kritika Raj
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
17
|
Tandon S, Sarkar S. The S6k/4E-BP mediated growth promoting sub-pathway of insulin signalling cascade is essential to restrict pathogenesis of poly(Q) disorders in Drosophila. Life Sci 2021; 275:119358. [PMID: 33744321 DOI: 10.1016/j.lfs.2021.119358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 01/05/2023]
Abstract
Human neurodegenerative polyglutamine [poly(Q)] disorders, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA), are characterised by an abnormal expansion of CAG repeats in the affected gene. The mutated proteins misfold and aggregate to form inclusion bodies that sequester important factors involved in cellular transcription, growth, stress and autophagic response and other essential functions. The insulin signalling pathway has been demonstrated as a major modifier and a potential drug target to ameliorate the poly(Q) mediated neurotoxicity in various model systems. Insulin signalling cascade harbours several downstream sub-pathways, which are synergistically involved in discharging indispensable biological functions such as growth and proliferation, metabolism, autophagy, regulation of cell death pathways etc. Hence, it is difficult to conclude whether the mitigation of poly(Q) neurotoxicity is an accumulative outcome of the insulin cascade, or the result of a specific sub-pathway. For the first time, we report that the ligand binding domain of insulin receptor mediated downstream growth promoting sub-pathway plays the pivotal role in operating the rescue event. We show that the growth promoting activity of insulin cascade is essential to minimize the abundance of inclusion bodies, to restrict neurodegeneration, and to restore the cellular transcriptional balance. Subsequently, we noted the involvement of the mTOR/S6k/4E-BP candidates in mitigating poly(Q) mediated neurotoxicity. Due to the conserved cellular functioning of the insulin cascade across species, and availability of several growth promoting molecules, our results in Drosophila poly(Q) models indicate towards a possibility of designing novel therapeutic strategies to restrict the pathogenesis of devastating human poly(Q) disorders.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
18
|
A fine balance between Prpf19 and Exoc7 in achieving degradation of aggregated protein and suppression of cell death in spinocerebellar ataxia type 3. Cell Death Dis 2021; 12:136. [PMID: 33542212 PMCID: PMC7862454 DOI: 10.1038/s41419-021-03444-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Polyglutamine (polyQ) diseases comprise Huntington's disease and several subtypes of spinocerebellar ataxia, including spinocerebellar ataxia type 3 (SCA3). The genomic expansion of coding CAG trinucleotide sequence in disease genes leads to the production and accumulation of misfolded polyQ domain-containing disease proteins, which cause cellular dysfunction and neuronal death. As one of the principal cellular protein clearance pathways, the activity of the ubiquitin-proteasome system (UPS) is tightly regulated to ensure efficient clearance of damaged and toxic proteins. Emerging evidence demonstrates that UPS plays a crucial role in the pathogenesis of polyQ diseases. Ubiquitin (Ub) E3 ligases catalyze the transfer of a Ub tag to label proteins destined for proteasomal clearance. In this study, we identified an E3 ligase, pre-mRNA processing factor 19 (Prpf19/prp19), that modulates expanded ataxin-3 (ATXN3-polyQ), disease protein of SCA3, induced neurodegeneration in both mammalian and Drosophila disease models. We further showed that Prpf19/prp19 promotes poly-ubiquitination and degradation of mutant ATXN3-polyQ protein. Our data further demonstrated the nuclear localization of Prpf19/prp19 is essential for eliciting its modulatory function towards toxic ATXN3-polyQ protein. Intriguingly, we found that exocyst complex component 7 (Exoc7/exo70), a Prpf19/prp19 interacting partner, modulates expanded ATXN3-polyQ protein levels and toxicity in an opposite manner to Prpf19/prp19. Our data suggest that Exoc7/exo70 exerts its ATXN3-polyQ-modifying effect through regulating the E3 ligase function of Prpf19/prp19. In summary, this study allows us to better define the mechanistic role of Exoc7/exo70-regulated Prpf19/prp19-associated protein ubiquitination pathway in SCA3 pathogenesis.
Collapse
|
19
|
Kumar R, Chhikara BS, Gulia K, Chhillar M. Cleaning the molecular machinery of cells via proteostasis, proteolysis and endocytosis selectively, effectively, and precisely: intracellular self-defense and cellular perturbations. Mol Omics 2020; 17:11-28. [PMID: 33135707 DOI: 10.1039/d0mo00085j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Network coordinates of cellular processes (proteostasis, proteolysis, and endocytosis), and molecular chaperones are the key complements in the cell machinery and processes. Specifically, cellular pathways are responsible for the conformational maintenance, cellular concentration, interactions, protein synthesis, disposal of misfolded proteins, localization, folding, and degradation. The failure of cellular processes and pathways disturbs structural proteins and the nucleation of amyloids. These mishaps further initiate amyloid polymorphism, transmissibility, co-aggregation of pathogenic proteins in tissues and cells, prion strains, and mechanisms and pathways for toxicity. Consequently, these conditions favor and lead to the formation of elongated amyloid fibrils consisting of many-stranded β-sheets (N,N-terminus and C,C-terminus), and abnormal fibrous, extracellular, proteinaceous deposits. Finally, these β-sheets deposit, and cells fail to degrade them effectively. The essential torsion angles (φ, ψ, and ω) define the conformation of proteins and their architecture. Cells initiate several transformations and pathways during the regulation of protein homeostasis based on the requirements for the functioning of the cell, which are governed by ATP-dependent proteases. In this process, the kinetics of the molding/folding phenomenon is disturbed, and subsequently, it is dominated by cross-domain misfolding intermediates; however, simultaneously, it is opposed by small stretching forces, which naturally exist in the cell. The ubiquitin/proteasome system deals with damaged proteins, which are not refolded by the chaperone-type machinery. Ubiquitin-protein ligases (E3-Ub) participate in all the cellular activity initiated and governed by molecular chaperones to stabilize the cellular proteome and participate in the degradation phenomenon implemented for damaged proteins. Optical tweezers, a single-resolution based technique, disclose the folding pathway of linear chain proteins, which is how they convert themselves into a three-dimensional architecture. Further, DNA-protein conjugation analysis is performed to obtain folding energies as single-molecule kinetic and thermodynamic data.
Collapse
Affiliation(s)
- Rajiv Kumar
- NIET, National Institute of Medical Science, India.
| | | | | | | |
Collapse
|
20
|
Beaver M, Bhatnagar A, Panikker P, Zhang H, Snook R, Parmar V, Vijayakumar G, Betini N, Akhter S, Elefant F. Disruption of Tip60 HAT mediated neural histone acetylation homeostasis is an early common event in neurodegenerative diseases. Sci Rep 2020; 10:18265. [PMID: 33106538 PMCID: PMC7588445 DOI: 10.1038/s41598-020-75035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear. We show that like AD, disruption of Tip60 HAT/HDAC2 balance with concomitant epigenetic repression of common Tip60 target neuroplasticity genes occurs early in multiple types of Drosophila ND models such as Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Repressed neuroplasticity genes show reduced enrichment of Tip60 and epigentic acetylation signatures at all gene loci examined with certain genes showing inappropriate HDAC2 repressor enrichment. Functional neuronal consequences for these disease conditions are reminiscent of human pathology and include locomotion, synapse morphology, and short-term memory deficits. Increasing Tip60 HAT levels specifically in the mushroom body learning and memory center in the Drosophila brain protects against locomotion and short-term memory function deficits in multiple NDs. Together, our results support a model by which Tip60 protects against neurological impairments in different NDs via similar modes of action.
Collapse
Affiliation(s)
- Mariah Beaver
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Haolin Zhang
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Renee Snook
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Visha Parmar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Gayathri Vijayakumar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Niteesha Betini
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Sunya Akhter
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Felice Elefant
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Neves-Carvalho A, Duarte-Silva S, Teixeira-Castro A, Maciel P. Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1099-1119. [PMID: 32962458 DOI: 10.1080/14728222.2020.1827394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Six of the most frequent dominantly inherited spinocerebellar ataxias (SCAs) worldwide - SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 - are caused by an expansion of a polyglutamine (polyQ) tract in the corresponding proteins. While the identification of the causative mutation has advanced knowledge on the pathogenesis of polyQ SCAs, effective therapeutics able to mitigate the severe clinical manifestation of these highly incapacitating disorders are not yet available. AREAS COVERED This review provides a comprehensive and critical perspective on well-established and emerging therapeutic targets for polyQ SCAs; it aims to inspire prospective drug discovery efforts. EXPERT OPINION The landscape of polyQ SCAs therapeutic targets and strategies includes (1) the mutant genes and proteins themselves, (2) enhancement of endogenous protein quality control responses, (3) abnormal protein-protein interactions of the mutant proteins, (4) disturbed neuronal function, (5) mitochondrial function, energy availability and oxidative stress, and (6) glial dysfunction, growth factor or hormone imbalances. Challenges include gaining a clearer definition of therapeutic targets for the drugs in clinical development, the discovery of novel drug-like molecules for challenging key targets, and the attainment of a stronger translation of preclinical findings to the clinic.
Collapse
Affiliation(s)
- Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory , Braga, Guimarães, Portugal
| |
Collapse
|
22
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
23
|
Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci 2020; 14:571. [PMID: 32581696 PMCID: PMC7296114 DOI: 10.3389/fnins.2020.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
New Synthetic 3-Benzoyl-5-Hydroxy-2 H-Chromen-2-One (LM-031) Inhibits Polyglutamine Aggregation and Promotes Neurite Outgrowth through Enhancement of CREB, NRF2, and Reduction of AMPK α in SCA17 Cell Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3129497. [PMID: 32377295 PMCID: PMC7195640 DOI: 10.1155/2020/3129497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is caused by a CAG/CAA expansion mutation encoding an expanded polyglutamine (polyQ) tract in TATA-box binding protein (TBP), a general transcription initiation factor. Suppression of cAMP-responsive element binding protein- (CREB-) dependent transcription, impaired nuclear factor erythroid 2-related factor 2 (NRF2) signaling, and interaction of AMP-activated protein kinase (AMPK) with increased oxidative stress have been implicated to be involved in pathogenic mechanisms of polyQ-mediated diseases. In this study, we demonstrated decreased pCREB and NRF2 and activated AMPK contributing to neurotoxicity in SCA17 SH-SY5Y cells. We also showed that licochalcone A and the related in-house derivative compound 3-benzoyl-5-hydroxy-2H-chromen-2-one (LM-031) exhibited antiaggregation, antioxidative, antiapoptosis, and neuroprotective effects in TBP/Q79-GFP-expressing cell models. LM-031 and licochalcone A exerted neuroprotective effects by upregulating pCREB and its downstream genes, BCL2 and GADD45B, and enhancing NRF2. Furthermore, LM-031, but not licochalcone A, reduced activated AMPKα. Knockdown of CREB and NRF2 and treatment of AICAR (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside), an AMPK activator, attenuated the aggregation-inhibiting and neurite outgrowth promoting effects of LM-031 on TBP/Q79 SH-SY5Y cells. The study results suggest the LM-031 as potential therapeutics for SCA17 and probable other polyQ diseases.
Collapse
|
25
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
26
|
Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways. PLoS One 2018; 13:e0204438. [PMID: 30231063 PMCID: PMC6145529 DOI: 10.1371/journal.pone.0204438] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene which encodes the deubiquitinating enzyme, ATXN3. Several mechanisms have been proposed to explain the pathogenic role of mutant, polyQ-expanded ATXN3 in SCA3 including disease protein aggregation, impairment of ubiquitin-proteasomal degradation and transcriptional dysregulation. A better understanding of the normal functions of this protein may shed light on SCA3 disease pathogenesis. To assess the potential normal role of ATXN3 in regulating gene expression, we compared transcriptional profiles in WT versus Atxn3 null mouse embryonic fibroblasts. Differentially expressed genes in the absence of ATXN3 contribute to multiple signal transduction pathways, suggesting a status switch of signaling pathways including depressed Wnt and BMP4 pathways and elevated growth factor pathways such as Prolactin, TGF-β, and Ephrin pathways. The Eph receptor A3 (Efna3), a receptor protein-tyrosine kinase in the Ephrin pathway that is highly expressed in the nervous system, was the most differentially upregulated gene in Atxn3 null MEFs. This increased expression of Efna3 was recapitulated in Atxn3 knockout mouse brainstem, a selectively vulnerable brain region in SCA3. Overexpression of normal or expanded ATXN3 was sufficient to repress Efna3 expression, supporting a role for ATXN3 in regulating Ephrin signaling. We further show that, in the absence of ATXN3, Efna3 upregulation is associated with hyperacetylation of histones H3 and H4 at the Efna3 promoter, which in turn is induced by decreased levels of HDAC3 and NCoR in ATXN3 null cells. Together, these results reveal a normal role for ATXN3 in transcriptional regulation of multiple signaling pathways of potential relevance to disease processes in SCA3.
Collapse
|