1
|
Gobbo D, Kirchhoff F. Animal-based approaches to understanding neuroglia physiology in vitro and in vivo. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:229-263. [PMID: 40122627 DOI: 10.1016/b978-0-443-19104-6.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter describes the pivotal role of animal models for unraveling the physiology of neuroglial cells in the central nervous system (CNS). The two rodent species Mus musculus (mice) and Rattus norvegicus (rats) have been indispensable in scientific research due to their remarkable resemblance to humans anatomically, physiologically, and genetically. Their ease of maintenance, short gestation times, and rapid development make them ideal candidates for studying the physiology of astrocytes, oligodendrocyte-lineage cells, and microglia. Moreover, their genetic similarity to humans facilitates the investigation of molecular mechanisms governing neural physiology. Mice are largely the predominant model of neuroglial research, owing to advanced genetic manipulation techniques, whereas rats remain invaluable for applications requiring larger CNS structures for surgical manipulations. Next to rodents, other animal models, namely, Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly), will be discussed to emphasize their critical role in advancing our understanding of glial physiology. Each animal model provides distinct advantages and disadvantages. By combining the strengths of each of them, researchers can gain comprehensive insights into glial function across species, ultimately promoting the understanding of glial physiology in the human CNS and driving the development of novel therapeutic interventions for CNS disorders.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany; Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany.
| |
Collapse
|
2
|
Cruz-Méndez JS, Herrera-Sánchez MP, Céspedes-Rubio ÁE, Rondón-Barragán IS. Molecular characterization of myelin basic protein a (mbpa) gene from red-bellied pacu (Piaractus brachypomus). JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:8. [PMID: 35024999 PMCID: PMC8758815 DOI: 10.1186/s43141-022-00296-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Background Myelin basic protein (MBP) is one of the most important structural components of the myelin sheaths in both central and peripheral nervous systems. MBP has several functions including organization of the myelin membranes, reorganization of the cytoskeleton during the myelination process, and interaction with the SH3 domain in signaling pathways. Likewise, MBP has been proposed as a marker of demyelination in traumatic brain injury and chemical exposure. Methods The aim of this study was to molecularly characterize the myelin basic protein a (mbpa) gene from the Colombian native fish, red-bellied pacu, Piaractus brachypomus. Bioinformatic tools were used to identify the phylogenetic relationships, physicochemical characteristics, exons, intrinsically disordered regions, and conserved domains of the protein. Gene expression was assessed by qPCR in three models corresponding to sublethal chlorpyrifos exposure, acute brain injury, and anesthesia experiments. Results mbpa complete open reading frame was identified with 414 nucleotides distributed in 7 exons that encode 137 amino acids. MBPa was recognized as belonging to the myelin basic protein family, closely related with orthologous proteins, and two intrinsically disordered regions were established within the sequence. Gene expression of mbpa was upregulated in the optic chiasm of the chlorpyrifos exposed fish in contrast to the control group. Conclusions The physicochemical computed features agree with the biological functions of MBP, and basal gene expression was according to the anatomical distribution in the tissues analyzed. This study is the first molecular characterization of mbpa from the native species Piaractus brachypomus.
Collapse
Affiliation(s)
- Juan Sebastian Cruz-Méndez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - María Paula Herrera-Sánchez
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - Ángel Enrique Céspedes-Rubio
- Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia. .,Research Group in Neurodegenerative Diseases, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, 730006299, Ibague, Tolima, Colombia. .,Laboratory of Immunology and Molecular Biology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Ibague, 730006299, Colombia.
| |
Collapse
|
3
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Wang D, Wang X, Huang H, Wang H. Triclosan regulates alternative splicing events of nerve-related genes through RNA-binding protein CELF2 to induce zebrafish neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125414. [PMID: 33621777 DOI: 10.1016/j.jhazmat.2021.125414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Herein, we demonstrated that triclosan (TCS) induced neurotoxicity mediated by pre-mRNA alternative splicing (AS). TCS exposure resulted in a series of phenotypic malformations, abnormal locomotor behavior, circadian rhythm disorder and inhibited AChE activity. High throughput mRNA sequencing revealed that TCS regulated the AS events of nerve-related genes. Meanwhile, abnormal expression was observed in marker genes related to nerve cell migration, axon guidance and myelination. The expression of mitochondrial apoptosis activator bcl2l11 was significantly increased under TCS exposure. Interestingly, CELF2 as one of the important RNA-binding proteins was closely related to the AS events, and its mRNA and protein expression levels were significantly increased in zebrafish brain under acute or chronic TCS exposure. Functional knock-down and over-expression of celf2 confirmed that TCS led to nervous system injury and developmental defects through the CELF2-mediated AS events of genes (mbpa, mef2d, u2af2b and matn3b). Histopathological injury, phenotypic malformation, abnormal locomotor behavior and changes in neuromarkers all confirmed the biological functions of CELF2 in zebrafish brain. These findings demonstrate that TCS might regulate some of the AS events of nerve-related genes through upregulating the expression of CELF2. Thus, CELF2 may serve as a target for the prevention, diagnosis and treatment of contaminant-induced neurological diseases.
Collapse
Affiliation(s)
- Danting Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
5
|
Siems SB, Jahn O, Hoodless LJ, Jung RB, Hesse D, Möbius W, Czopka T, Werner HB. Proteome Profile of Myelin in the Zebrafish Brain. Front Cell Dev Biol 2021; 9:640169. [PMID: 33898427 PMCID: PMC8060510 DOI: 10.3389/fcell.2021.640169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
The velocity of nerve conduction along vertebrate axons depends on their ensheathment with myelin. Myelin membranes comprise specialized proteins well characterized in mice. Much less is known about the protein composition of myelin in non-mammalian species. Here, we assess the proteome of myelin biochemically purified from the brains of adult zebrafish (Danio rerio), considering its increasing popularity as model organism for myelin biology. Combining gel-based and gel-free proteomic approaches, we identified > 1,000 proteins in purified zebrafish myelin, including all known constituents. By mass spectrometric quantification, the predominant Ig-CAM myelin protein zero (MPZ/P0), myelin basic protein (MBP), and the short-chain dehydrogenase 36K constitute 12%, 8%, and 6% of the total myelin protein, respectively. Comparison with previously established mRNA-abundance profiles shows that expression of many myelin-related transcripts coincides with the maturation of zebrafish oligodendrocytes. Zebrafish myelin comprises several proteins that are not present in mice, including 36K, CLDNK, and ZWI. However, a surprisingly large number of ortholog proteins is present in myelin of both species, indicating partial evolutionary preservation of its constituents. Yet, the relative abundance of CNS myelin proteins can differ markedly as exemplified by the complement inhibitor CD59 that constitutes 5% of the total zebrafish myelin protein but is a low-abundant myelin component in mice. Using novel transgenic reporter constructs and cryo-immuno electron microscopy, we confirm the incorporation of CD59 into myelin sheaths. These data provide the first proteome resource of zebrafish CNS myelin and demonstrate both similarities and heterogeneity of myelin composition between teleost fish and rodents.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Laura J Hoodless
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
6
|
Yergert KM, Doll CA, O’Rouke R, Hines JH, Appel B. Identification of 3' UTR motifs required for mRNA localization to myelin sheaths in vivo. PLoS Biol 2021; 19:e3001053. [PMID: 33439856 PMCID: PMC7837478 DOI: 10.1371/journal.pbio.3001053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/26/2021] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Myelin is a specialized membrane produced by oligodendrocytes that insulates and supports axons. Oligodendrocytes extend numerous cellular processes, as projections of the plasma membrane, and simultaneously wrap multiple layers of myelin membrane around target axons. Notably, myelin sheaths originating from the same oligodendrocyte are variable in size, suggesting local mechanisms regulate myelin sheath growth. Purified myelin contains ribosomes and hundreds of mRNAs, supporting a model that mRNA localization and local protein synthesis regulate sheath growth and maturation. However, the mechanisms by which mRNAs are selectively enriched in myelin sheaths are unclear. To investigate how mRNAs are targeted to myelin sheaths, we tested the hypothesis that transcripts are selected for myelin enrichment through consensus sequences in the 3' untranslated region (3' UTR). Using methods to visualize mRNA in living zebrafish larvae, we identified candidate 3' UTRs that were sufficient to localize mRNA to sheaths and enriched near growth zones of nascent membrane. We bioinformatically identified motifs common in 3' UTRs from 3 myelin-enriched transcripts and determined that these motifs are required and sufficient in a context-dependent manner for mRNA transport to myelin sheaths. Finally, we show that 1 motif is highly enriched in the myelin transcriptome, suggesting that this sequence is a global regulator of mRNA localization during developmental myelination.
Collapse
Affiliation(s)
- Katie M. Yergert
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Caleb A. Doll
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rebecca O’Rouke
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jacob H. Hines
- Department of Biology, Winona State University, Winona, Minnesota, United States of America
| | - Bruce Appel
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|