1
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
|
3
|
Chen X, Muñoz-Arellano AJ, Petranovic D. UBB +1 reduces amyloid-β cytotoxicity by activation of autophagy in yeast. Aging (Albany NY) 2021; 13:23953-23980. [PMID: 34751669 PMCID: PMC8610117 DOI: 10.18632/aging.203681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2021] [Indexed: 04/20/2023]
Abstract
UBB+1 is a mutated version of ubiquitin B peptide caused by a transcriptional frameshift due to the RNA polymerase II "slippage". The accumulation of UBB+1 has been linked to ubiquitin-proteasome system (UPS) dysfunction and neurodegeneration. Alzheimer's disease (AD) is defined as a progressive neurodegeneration and aggregation of amyloid-β peptides (Aβ) is a prominent neuropathological feature of AD. In our previous study, we found that yeast cells expressing UBB+1 at lower level display an increased resistance to cellular stresses under conditions of chronological aging. In order to examine the molecular mechanisms behind, here we performed genome-wide transcriptional analyses and molecular/cellular biology assays. We found that low UBB+1 expression activated the autophagy pathway, increased vacuolar activity, and promoted transport of autophagic marker ATG8p into vacuole. Furthermore, we introduced low UBB+1 expression to our humanized yeast AD models, that constitutively express Aβ42 and Aβ40 peptide, respectively. The co-expression of UBB+1 with Aβ42 or Aβ40 peptide led to reduced intracellular Aβ levels, ameliorated viability, and increased chronological life span. In an autophagy deficient background strain (atg1Δ), intracellular Aβ levels were not affected by UBB+1 expression. Our findings offer insights for reducing intracellular Aβ toxicity via autophagy-dependent cellular pathways under low level of UBB+1 expression.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Ana Joyce Muñoz-Arellano
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Meza E, Muñoz-Arellano AJ, Johansson M, Chen X, Petranovic D. Development of a method for heat shock stress assessment in yeast based on transcription of specific genes. Yeast 2021; 38:549-565. [PMID: 34182606 DOI: 10.1002/yea.3658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 11/11/2022] Open
Abstract
All living cells, including yeast cells, are challenged by different types of stresses in their environments and must cope with challenges such as heat, chemical stress, or oxidative damage. By reversibly adjusting the physiology while maintaining structural and genetic integrity, cells can achieve a competitive advantage and adapt environmental fluctuations. The yeast Saccharomyces cerevisiae has been extensively used as a model for study of stress responses due to the strong conservation of many essential cellular processes between yeast and human cells. We focused here on developing a tool to detect and quantify early responses using specific transcriptional responses. We analyzed the published transcriptional data on S. cerevisiae DBY strain responses to 10 different stresses in different time points. The principal component analysis (PCA) and the Pearson analysis were used to assess the stress response genes that are highly expressed in each individual stress condition. Except for these stress response genes, we also identified the reference genes in each stress condition, which would not be induced under stress condition and show stable transcriptional expression over time. We then tested our candidates experimentally in the CEN.PK strain. After data analysis, we identified two stress response genes (UBI4 and RRP) and two reference genes (MEX67 and SSY1) under heat shock (HS) condition. These genes were further verified by real-time PCR at mild (42°C), severe (46°C), to lethal temperature (50°C), respectively.
Collapse
Affiliation(s)
- Eugenio Meza
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ana Joyce Muñoz-Arellano
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Johansson
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Banasiak K, Szulc NA, Pokrzywa W. The Dose-Dependent Pleiotropic Effects of the UBB +1 Ubiquitin Mutant. Front Mol Biosci 2021; 8:650730. [PMID: 33842548 PMCID: PMC8032880 DOI: 10.3389/fmolb.2021.650730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
The proteolytic machinery activity diminishes with age, leading to abnormal accumulation of aberrant proteins; furthermore, a decline in protein degradation capacity is associated with multiple age-related proteinopathies. Cellular proteostasis can be maintained via the removal of ubiquitin (Ub)-tagged damaged and redundant proteins by the ubiquitin-proteasome system (UPS). However, during aging, central nervous system (CNS) cells begin to express a frameshift-mutated Ub, UBB+1. Its accumulation is a neuropathological hallmark of tauopathy, including Alzheimer’s disease and polyglutamine diseases. Mechanistically, in cell-free and cell-based systems, an increase in the UBB+1 concentration disrupts proteasome processivity, leading to increased aggregation of toxic proteins. On the other hand, a low level of UBB+1 improves stress resistance and extends lifespan. Here we summarize recent findings regarding the impact of UBB+1 on Ub signaling and neurodegeneration. We also review the molecular basis of how UBB+1 affects UPS components as well as its dose-dependent switch between cytoprotective and cytotoxic roles.
Collapse
Affiliation(s)
- Katarzyna Banasiak
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Natalia A Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Chen X, Ji B, Hao X, Li X, Eisele F, Nyström T, Petranovic D. FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nat Commun 2020; 11:867. [PMID: 32054832 PMCID: PMC7018843 DOI: 10.1038/s41467-020-14525-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is defined by progressive neurodegeneration, with oligomerization and aggregation of amyloid-β peptides (Aβ) playing a pivotal role in its pathogenesis. In recent years, the yeast Saccharomyces cerevisiae has been successfully used to clarify the roles of different human proteins involved in neurodegeneration. Here, we report a genome-wide synthetic genetic interaction array to identify toxicity modifiers of Aβ42, using yeast as the model organism. We find that FMN1, the gene encoding riboflavin kinase, and its metabolic product flavin mononucleotide (FMN) reduce Aβ42 toxicity. Classic experimental analyses combined with RNAseq show the effects of FMN supplementation to include reducing misfolded protein load, altering cellular metabolism, increasing NADH/(NADH + NAD+) and NADPH/(NADPH + NADP+) ratios and increasing resistance to oxidative stress. Additionally, FMN supplementation modifies Htt103QP toxicity and α-synuclein toxicity in the humanized yeast. Our findings offer insights for reducing cytotoxicity of Aβ42, and potentially other misfolded proteins, via FMN-dependent cellular pathways.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Boyang Ji
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Xiaowei Li
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, SE40530, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
| |
Collapse
|
7
|
Ruetenik A, Barrientos A. Exploiting Post-mitotic Yeast Cultures to Model Neurodegeneration. Front Mol Neurosci 2018; 11:400. [PMID: 30450036 PMCID: PMC6224518 DOI: 10.3389/fnmol.2018.00400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Over the last few decades, the budding yeast Saccharomyces cerevisiae has been extensively used as a valuable organism to explore mechanisms of aging and human age-associated neurodegenerative disorders. Yeast models can be used to study loss of function of disease-related conserved genes and to investigate gain of function activities, frequently proteotoxicity, exerted by non-conserved human mutant proteins responsible for neurodegeneration. Most published models of proteotoxicity have used rapidly dividing cells and suffer from a high level of protein expression resulting in acute growth arrest or cell death. This contrasts with the slow development of neurodegenerative proteotoxicity during aging and the characteristic post-mitotic state of the affected cell type, the neuron. Here, we will review the efforts to create and characterize yeast models of neurodegeneration using the chronological life span model of aging, and the specific information they can provide regarding the chronology of physiological events leading to neurotoxic proteotoxicity-induced cell death and the identification of new pathways involved.
Collapse
Affiliation(s)
- Andrea Ruetenik
- Department of Neurology, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Neuroscience Graduate Program, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonio Barrientos
- Department of Neurology, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Neuroscience Graduate Program, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Biochemistry, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|