1
|
Wang M, Yao SQ, Huang Y, Liang JJ, Xu Y, Chen S, Wang Y, Ng TK, Chu WK, Cui Q, Cen LP. Casein kinase-2 inhibition promotes retinal ganglion cell survival after acute intraocular pressure elevation. Neural Regen Res 2024; 19:1112-1118. [PMID: 37862216 PMCID: PMC10749609 DOI: 10.4103/1673-5374.385310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 10/22/2023] Open
Abstract
Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma, the leading cause of irreversible blindness. We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury. To investigate the underlying mechanism, in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor (4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) by intravitreal injection. We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages. Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors. Furthermore, casein kinase-2 inhibition downregulated the expression of genes (Cck, Htrsa, Nef1, Htrlb, Prph, Chat, Slc18a3, Slc5a7, Scn1b, Crybb2, Tsga10ip, and Vstm21) involved in intraocular pressure elevation. Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.
Collapse
Affiliation(s)
- Meng Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Shi-Qi Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yao Huang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Yuhang Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qi Cui
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
2
|
Li X, Yang Q, Jiang P, Wen J, Chen Y, Huang J, Tian M, Ren J, Yang Q. Inhibition of CK2 Diminishes Fibrotic Scar Formation and Improves Outcomes After Ischemic Stroke via Reducing BRD4 Phosphorylation. Neurochem Res 2024; 49:1254-1267. [PMID: 38381246 PMCID: PMC10991067 DOI: 10.1007/s11064-024-04112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-β1 (TGF-β1), SB431542 (a TGF-β1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-β1-induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-β1 receptor kinase inhibitor SB431542 decreased CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of fibroblasts caused by TGF-β1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, protected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, The Second People's Hospital of Chongqing Banan District, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Pérez-Montes C, Jiménez-Cubides JP, Velasco A, Arévalo R, Santos-Ledo A, García-Macia M. REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration. Antioxidants (Basel) 2023; 12:2026. [PMID: 38136146 PMCID: PMC10740785 DOI: 10.3390/antiox12122026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Zebrafish (Danio rerio) present continuous growth and regenerate many parts of their body after an injury. Fish oligodendrocytes, microglia and astrocytes support the formation of new connections producing effective regeneration of the central nervous system after a lesion. To understand the role of oligodendrocytes and the signals that mediate regeneration, we use the well-established optic nerve (ON) crush model. We also used sox10 fluorescent transgenic lines to label fully differentiated oligodendrocytes. To quench the effect of reactive oxygen species (ROS), we used the endogenous antioxidant melatonin. Using these tools, we measured ROS production by flow cytometry and explored the regeneration of the optic tectum (OT), the response of oligodendrocytes and their mitochondria by confocal microscopy and Western blot. ROS are produced by oligodendrocytes 3 h after injury and JNK activity is triggered. Concomitantly, there is a decrease in the number of fully differentiated oligodendrocytes in the OT and in their mitochondrial population. By 24 h, oligodendrocytes partially recover. Exposure to melatonin blocks the changes observed in these oligodendrocytes at 3 h and increases their number and their mitochondrial populations after 24 h. Melatonin also blocks JNK upregulation and induces aberrant neuronal differentiation in the OT. In conclusion, a proper balance of ROS is necessary during visual system regeneration and exposure to melatonin has a detrimental impact.
Collapse
Affiliation(s)
- Cristina Pérez-Montes
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Department of Human Anatomy and Histology, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jhoana Paola Jiménez-Cubides
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
| | - Almudena Velasco
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rosario Arévalo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Adrián Santos-Ledo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.P.-M.); (J.P.J.-C.); (A.V.); (R.A.)
- Department of Human Anatomy and Histology, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Salamanca, 37007 Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), 28029 Madrid, Spain
| |
Collapse
|
4
|
Jeon J, Lee SY. CK2 inhibitor CX4945 inhibits collagen degradation of HaCaT human keratinocyte cells via attenuation of MMP-1 secretion. Mol Biol Rep 2023; 50:9691-9698. [PMID: 37658930 DOI: 10.1007/s11033-023-08708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION During skin aging, the extracellular matrix (ECM) concomitantly breaks down. Out of the various protein components that comprise ECM, collagen is the most abundant one. Matrix metalloproteinase-1 (MMP-1) is a major collagenase that can degrade collagen. Therefore, the inhibition of MMP-1 may be critical for skin aging prevention. CX4945 is an inhibitor of casein kinase 2 and shows anticancer effects on various types of cancer cells. METHODS AND RESULTS In this report, we investigated the MMP-1-inhibiting effect of CX4945 in HaCaT human keratinocyte cells. We performed zymography assays, Western blot analysis and immunoprecipitation assay to investigate the anti-MMP-1 effects of CX4945. CX4945 was found to inhibit collagen degradation via attenuation of the MMP-1 secretion out of HaCaT cells. This activity of CX4945 may be mediated by the induction of MMP-1 ubiquitylation via c-Jun N-terminal kinase (JNK) signaling. In wound healing cell migration assay, CX4945 also showed suppressive effect on the migration of HaCaT cells. This finding was closely related to the attenuation of CREB transcription factor via the downregulation of ERK mitogen-activated protein kinase as observed in Western blot analysis. CONCLUSION Our report suggests that the inhibitory effects of CX4945 on MMP-1 in epidermal cells may offer a basis for further studying its therapeutic potential as an anti-wrinkle agent.
Collapse
Affiliation(s)
- Jusu Jeon
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea.
| |
Collapse
|
5
|
Wang CY, Zuo Z, Jo J, Kim KI, Madamba C, Ye Q, Jung SY, Bellen HJ, Lee HK. Daam2 phosphorylation by CK2α negatively regulates Wnt activity during white matter development and injury. Proc Natl Acad Sci U S A 2023; 120:e2304112120. [PMID: 37607236 PMCID: PMC10469030 DOI: 10.1073/pnas.2304112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Wnt signaling plays an essential role in developmental and regenerative myelination in the central nervous system. The Wnt signaling pathway is composed of multiple regulatory layers; thus, how these processes are coordinated to orchestrate oligodendrocyte (OL) development remains unclear. Here, we show CK2α, a Wnt/β-catenin signaling Ser/Thr kinase, phosphorylates Daam2, inhibiting its function and Wnt activity during OL development. Intriguingly, we found Daam2 phosphorylation differentially impacts distinct stages of OL development, accelerating early differentiation followed by decelerating maturation and myelination. Application toward white matter injury revealed CK2α-mediated Daam2 phosphorylation plays a protective role for developmental and behavioral recovery after neonatal hypoxia, while promoting myelin repair following adult demyelination. Together, our findings identify a unique regulatory node in the Wnt pathway that regulates OL development via protein phosphorylation-induced signaling complex instability and highlights a new biological mechanism for myelin restoration.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan70101, Taiwan
| | - Zhongyuan Zuo
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Kyoung In Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Christine Madamba
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX77030
| | - Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - Hugo J. Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
6
|
Al-Ayadhi L, Bhat RS, Alghamdi FA, Alhadlaq AS, El-Ansary A. Influence of Auditory Integrative Training on Casein Kinase 2 and Its Impact on Behavioral and Social Interaction in Children with Autism Spectrum Disorder. Curr Issues Mol Biol 2023; 45:4317-4330. [PMID: 37232743 DOI: 10.3390/cimb45050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Considerable disturbances in post-translational protein phosphorylation have recently been discovered in multiple neurological disorders. Casein kinase-2 (CK2) is a tetrameric Ser/Thr protein kinase that phosphorylates a large number of substrates and contributes in several cellular physiological and pathological processes. CK2 is highly expressed in the mammalian brain and catalyzes the phosphorylation of a large number of substrates that are crucial in neuronal or glial homeostasis and inflammatory signaling processes across synapses. In this study, we investigated the impact of auditory integration therapy (AIT) for the treatment of sensory processing abnormalities in autism on plasma CK2 levels. A total of 25 ASD children, aged between 5 and 12 years, were enrolled and participated in the present research study. AIT was performed for two weeks, for a period of 30 min, twice a day, with a 3 h interval between sessions. Before and after AIT, the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma CK2 levels were assayed using an ELISA test. The CARS and SRS indices of autism severity improved as a result of AIT, which could be related to the decreased level of plasma CK2. However, the mean value of the SSP scores was not significantly increased after AIT. The relationship between CK2 downregulation and glutamate excitotoxicity, neuro-inflammation, and leaky gut, as etiological mechanisms in ASD, was proposed and discussed. Further research, conducted on a larger scale and with a longer study duration, are required to assess whether the cognitive improvement in ASD children after AIT is related to the downregulation of CK2.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Farah Ali Alghamdi
- College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | | | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
- Autism Center, Lotus Holistic Medical Center, Abu Dhabi 110281, United Arab Emirates
| |
Collapse
|
7
|
Wang CY, Zuo Z, Kim KI, Bellen HJ, Lee HK. CK2α-dependent regulation of Wnt activity governs white matter development and repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536369. [PMID: 37090554 PMCID: PMC10120613 DOI: 10.1101/2023.04.11.536369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Wnt signaling plays an essential role in developmental and regenerative myelination in the CNS. The Wnt signaling pathway is comprised of multiple regulatory layers; thus, how these processes are coordinated to orchestrate oligodendrocyte development remains unclear. Here we show CK2α, a Wnt/β-catenin signaling Ser/Thr kinase, phosphorylates Daam2, inhibiting its function and Wnt-activity during oligodendrocyte development. Intriguingly, we found Daam2 phosphorylation differentially impacts distinct stages of oligodendrocyte development, accelerating early differentiation followed by decelerating maturation and myelination. Application towards white matter injury revealed CK2α-mediated Daam2 phosphorylation plays a protective role for developmental and behavioral recovery after neonatal hypoxia, while promoting myelin repair following adult demyelination. Together, our findings identify a novel regulatory node in the Wnt pathway that regulates oligodendrocyte development via protein phosphorylation-induced signaling complex instability and highlights a new biological mechanism for myelin restoration. Significance Wnt signaling plays a vital role in OL development and has been implicated as an adverse event for myelin repair after white matter injury. Emerging studies have shed light on multi-modal roles of Wnt effectors in the OL lineage, but the underlying molecular mechanisms and modifiable targets in OL remyelination remain unclear. Using genetic mouse development and injury model systems, we delineate a novel stage-specific function of Daam2 in Wnt signaling and OL development via a S704/T7-5 phosphorylation mechanism, and determine a new role of the kinase CK2α in contributing to OL development. In-depth understanding of CK2α-Daam2 pathway regulation will allow us to precisely modulate its activity in conjunction with Wnt signaling and harness its biology for white matter pathology.
Collapse
|
8
|
Bayón-Cordero L, Ochoa-Bueno BI, Ruiz A, Ozalla M, Matute C, Sánchez-Gómez MV. GABA Receptor Agonists Protect From Excitotoxic Damage Induced by AMPA in Oligodendrocytes. Front Pharmacol 2022; 13:897056. [PMID: 35959434 PMCID: PMC9360600 DOI: 10.3389/fphar.2022.897056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Oligodendrocytes are the myelin forming cells of the central nervous system, and their vulnerability to excitotoxicity induced by glutamate contributes to the pathogenesis of neurological disorders including brain ischemia and neurodegenerative diseases, such as multiple sclerosis. In addition to glutamate receptors, oligodendrocytes express GABA receptors (GABAR) that are involved in their survival and differentiation. The interactions between glutamate and GABAergic systems are well documented in neurons, under both physiological and pathological conditions, but this potential crosstalk in oligodendrocytes has not been studied in depth. Here, we evaluated the protective effect of GABAR agonists, baclofen (GABAB) and muscimol (GABAA), against AMPA-induced excitotoxicity in cultured rat oligodendrocytes. First, we observed that both baclofen and muscimol reduced cell death and caspase-3 activation after AMPA insult, proving their oligoprotective potential. Interestingly, analysis of the cell-surface expression of calcium-impermeable GluR2 subunits in oligodendrocytes revealed that GABAergic agonists significantly reverted GluR2 internalization induced by AMPA. We determined that baclofen and muscimol also impaired AMPA-induced intracellular calcium increase and subsequent mitochondrial membrane potential alteration, ROS generation, and calpain activation. However, AMPA-triggered activation of Src, Akt, JNK and CREB was not affected by baclofen or muscimol. Overall, our results suggest that GABAR activation initiates alternative molecular mechanisms that attenuate AMPA-mediated apoptotic excitotoxicity in oligodendrocytes by interfering with expression of GluR subunits in membranes and with calcium-dependent intracellular signaling pathways. Together, these findings provide evidence of GABAR agonists as potential oligodendroglial protectants in central nervous system disorders.
Collapse
Affiliation(s)
- Laura Bayón-Cordero
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Blanca Isabel Ochoa-Bueno
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Asier Ruiz
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Marina Ozalla
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - María Victoria Sánchez-Gómez
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
9
|
Zhu Y, Zheng B, Cai C, Lin Z, Qin H, Liu H, Cui C, Chen M. Febuxostat increases ventricular arrhythmogenesis through calcium handling dysregulation in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2022; 189:216-224. [PMID: 35866629 DOI: 10.1093/toxsci/kfac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Febuxostat is a xanthine oxidase inhibitor used to reduce the formation of uric acid and prevent gout attacks. Previous studies have suggested that febuxostat was associated with a higher risk of cardiovascular events, including atrial fibrillation, compared with allopurinol, another anti-hyperuricemia drug. Whereas in our clinical practice, we identified two cases of febuxostat-associated ventricular tachycardia events. The proarrhythmogenic effects of febuxostat on human cardiomyocytes and underlined mechanisms remain poorly understood. In this study, we employed real time cell analysis (RTCA) and calcium transient to investigate the effects of febuxostat on the cytotoxicity and electrophysiology properties of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Up to 10 μM febuxostat treatment did not show toxicity to cell viability. However, 48-hour febuxostat exposure generated dose-dependent increased irregular calcium transients and decreased calcium transient amplitude. Furthermore, RNA-seq analysis indicated that the MAPK signaling pathway was enriched in the febuxostat-treated group, especially the protein kinases JNK. Western blotting of three main protein kinases demonstrated that JNK activation is related to febuxostat-induced arrythmia rather than ERK or p38. The dysfunctional calcium dynamics of febuxostat-treated hiPSC-CMs could be ameliorated by SP600125, the inhibitor of JNK. In conclusion, our study demonstrated that febuxostat increases the predisposition to ventricular arrythmia by dysregulating calcium dynamics.
Collapse
Affiliation(s)
- Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingyu Zheng
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cheng Cai
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqiao Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huiyuan Qin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
10
|
Borgo C, D'Amore C, Cesaro L, Sarno S, Pinna LA, Ruzzene M, Salvi M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit Rev Biochem Mol Biol 2021; 56:321-359. [PMID: 33843388 DOI: 10.1080/10409238.2021.1908951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Exopolysaccharides isolated from Rhizopus nigricans induced colon cancer cell apoptosis in vitro and in vivo via activating the AMPK pathway. Biosci Rep 2021; 40:221749. [PMID: 31894839 PMCID: PMC6960068 DOI: 10.1042/bsr20192774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related human deaths. The exopolysaccharide (EPS1-1), isolated from Rhizopus nigricans, has been described as exhibiting anti-tumor and pro-apoptotic activity against CRC, although the underlying mechanism is poorly understood. Herein, we investigate how EPS1-1 induces apoptosis of CRC cells in vitro and in vivo. Our results show that, in vitro, EPS1-1 suppressed cell growth and facilitated apoptosis in a dose- and time-dependent manner by activating the AMP-activated protein kinase (AMPK) pathway in mouse colon cancer CT26 cells. However, treatment with small interfering RNAs (siRNAs) targeting AMPKα or with compound C, an AMPK inhibitor, interfered with the pro-apoptosis effects of EPS1-1. We also show that EPS1-1 initiated the release of reactive oxygen species (ROS) and liver kinase B1 (LKB1), both of which are necessary signals for AMPK activation. Furthermore, EPS1-1-mediated apoptosis is regulated by inactivation of mammalian target of rapamycin complex 1 (mTORC1) and activation of the jun-NH2 kinase (JNK)-p53 signaling axis dependent on AMPK activation. In vivo, azoxymethane/dextran sulfate sodium (AOM/DSS)-treated CRC mice, when administered EPS1-1, exhibited activation of the AMPK pathway, inhibition of mTORC1, and accumulation of p53 in tumor tissues. Collectively, these findings suggest that EPS1-1-induced apoptosis relies on the activation of the AMPK pathway. The present study provides evidence suggesting that EPS1-1 may be an effective target for development of novel CRC therapeutic agents.
Collapse
|
12
|
Serrano-Regal MP, Luengas-Escuza I, Bayón-Cordero L, Ibarra-Aizpurua N, Alberdi E, Pérez-Samartín A, Matute C, Sánchez-Gómez MV. Oligodendrocyte Differentiation and Myelination Is Potentiated via GABA B Receptor Activation. Neuroscience 2019; 439:163-180. [PMID: 31349008 DOI: 10.1016/j.neuroscience.2019.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs) is a key event for axonal myelination in the central nervous system (CNS). Several growth factors and neurotransmitters like GABA are postulated as important regulators of that process, and different protein kinases may also participate in OL differentiation and myelination. However, the molecular mechanisms underlying the regulation of myelination by neurotransmitters are only partially known. In the present study, we provide evidence showing that GABA receptors (GABARs) play an important role in OL differentiation. First, we observed that OPCs and OLs synthesize GABA and expressed GABAR and transporters, both in vitro and in vivo and, in contrast to GABAARs, the subunits GABAB1R and GABAB2R are expressed in OLs over time. Then, we found that exogenous GABA increases the number of myelin segments and MBP expression in DRG-OPC cocultures, indicating that GABA regulates myelination when OLs are in contact with axons. Notably, in purified rat OPC cultures, chronic treatment with GABA and baclofen, specific GABABR agonist, accelerates OPC differentiation by enhancing the processes branching and myelin protein expression, effects that are reverted in presence of GABABR specific antagonist CGP55845. Exposure of OPCs to baclofen promotes the Src-phosphorylation, and the baclofen-induced maturation is attenuated in presence of the Src-family kinases inhibitor PP2. None of these effects are mediated by the GABAAR agonist muscimol. Together, these results highlight the relevance of the GABAergic system in OL differentiation, and indicate that this functional role is mediated through GABABR involving the participation of Src-family kinases. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Mari Paz Serrano-Regal
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Irene Luengas-Escuza
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Bayón-Cordero
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naroa Ibarra-Aizpurua
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Elena Alberdi
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alberto Pérez-Samartín
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Victoria Sánchez-Gómez
- Deparment of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain; Achucarro Basque Center for Neuroscience, Leioa, Spain; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| |
Collapse
|