1
|
Mokhtar DM, Alesci A, Pergolizzi S, Zaccone G. Light and electron microscopic observations on retinal neurons of red-tail shark (Epalzeorhynchos bicolor H. M. Smith, 1931). Microsc Res Tech 2024; 87:1009-1019. [PMID: 38192121 DOI: 10.1002/jemt.24488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
The structure of photoreceptors (PR) and the arrangement of neurons in the retina of red-tail shark were investigated using light and electron microscopy. The PR showed a mosaic arrangement and included double cones, single cones (SC), and single rods. Most cones occur as SC. The ratio between the number of cones and rods was 3:1.39 (±0.29). The rods were tall that reached the pigmented epithelium. The outer plexiform layer (OPL) showed a complex synaptic connection between the horizontal and photoreceptor terminals that were surrounded by Müller cell processes. Electron microscopy showed that the OPL possessed both cone pedicles and rod spherules. Each rod spherule consisted of a single synaptic ribbon within the invaginating terminal endings of the horizontal cell (hc) processes. In contrast, the cone pedicles possessed many synaptic ribbons within their junctional complexes. The inner nuclear layer consisted of bipolar, amacrine, Müller cells, and hc. Müller cells possessed intermediate filaments and cell processes that can reach the outer limiting membrane and form connections with each other by desmosomes. The ganglion cells were large multipolar cells with a spherical nucleus and Nissl' bodies in their cytoplasm. The presence of different types of cones arranged in a mosaic pattern in the retina of this species favors the spatial resolution of visual objects. RESEARCH HIGHLIGHTS: This is the first study demonstrating the structure and arrangement of retinal neurons of red-tail shark using light and electron microscopy. The current study showed the presence of different types of cones arranged in a mosaic pattern that may favor the spatial resolution of visual objects in this species. The bipolar, amacrine, Müller, and horizontal cells could be demonstrated.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Vet. Medicine, Assiut University, Assiut, Egypt
- Department of Histology and Anatomy, School of veterinary medicine, Badr University in Assiut, Assiut, Egypt
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giacomo Zaccone
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, Messina, Italy
| |
Collapse
|
2
|
DeOliveira-Mello L, Vicente I, Gonzalez-Nunez V, Santos-Ledo A, Velasco A, Arévalo R, Lara JM, Mack AF. Doublecortin in the Fish Visual System, a Specific Protein of Maturing Neurons. BIOLOGY 2022; 11:biology11020248. [PMID: 35205114 PMCID: PMC8869232 DOI: 10.3390/biology11020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Doublecortin (DCX) is an essential protein in the development of the central nervous system and in lamination of the mammalian cortex. It is known that the expression of DCX is restricted to newborn neurons. The visual system of teleost fish has been postulated as an ideal model since it continuously grows throughout the animal’s life. Here, we report a comparative expression analysis of DCX between two teleost fish species as well as a bioinformatic analysis with other animal groups. Our results demonstrate that DCX is very useful for identifying new neurons in the visual systems of Astatotilapia burtoni, but is absent in Danio rerio. Abstract Doublecortin (DCX) is a microtubule associated protein, essential for correct central nervous system development and lamination in the mammalian cortex. It has been demonstrated to be expressed in developing—but not in mature—neurons. The teleost visual system is an ideal model to study mechanisms of adult neurogenesis due to its continuous life-long growth. Here, we report immunohistochemical, in silico, and western blot analysis to detect the DCX protein in the visual system of teleost fish. We clearly determined the expression of DCX in newly generated cells in the retina of the cichlid fish Astatotilapia burtoni, but not in the cyprinid fish Danio rerio. Here, we show that DCX is not associated with migrating cells but could be related to axonal growth. This work brings to light the high conservation of DCX sequences between different evolutionary groups, which make it an ideal marker for maturing neurons in various species. The results from different techniques corroborate the absence of DCX expression in zebrafish. In A. burtoni, DCX is very useful for identifying new neurons in the transition zone of the retina. In addition, this marker can be applied to follow axons from maturing neurons through the neural fiber layer, optic nerve head, and optic nerve.
Collapse
Affiliation(s)
- Laura DeOliveira-Mello
- Institute of Neurosciences of Castilla and León, University of Salamanca, 37007 Salamanca, Spain; (V.G.-N.); (A.S.-L.); (A.V.); (R.A.); (J.M.L.)
- Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Correspondence:
| | - Isabel Vicente
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy;
| | - Veronica Gonzalez-Nunez
- Institute of Neurosciences of Castilla and León, University of Salamanca, 37007 Salamanca, Spain; (V.G.-N.); (A.S.-L.); (A.V.); (R.A.); (J.M.L.)
- Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Adrian Santos-Ledo
- Institute of Neurosciences of Castilla and León, University of Salamanca, 37007 Salamanca, Spain; (V.G.-N.); (A.S.-L.); (A.V.); (R.A.); (J.M.L.)
- Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Almudena Velasco
- Institute of Neurosciences of Castilla and León, University of Salamanca, 37007 Salamanca, Spain; (V.G.-N.); (A.S.-L.); (A.V.); (R.A.); (J.M.L.)
- Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Rosario Arévalo
- Institute of Neurosciences of Castilla and León, University of Salamanca, 37007 Salamanca, Spain; (V.G.-N.); (A.S.-L.); (A.V.); (R.A.); (J.M.L.)
- Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Juan M. Lara
- Institute of Neurosciences of Castilla and León, University of Salamanca, 37007 Salamanca, Spain; (V.G.-N.); (A.S.-L.); (A.V.); (R.A.); (J.M.L.)
- Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Andreas F. Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard-Karls Universität Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
3
|
Decline in Constitutive Proliferative Activity in the Zebrafish Retina with Ageing. Int J Mol Sci 2021; 22:ijms222111715. [PMID: 34769146 PMCID: PMC8583983 DOI: 10.3390/ijms222111715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023] Open
Abstract
It is largely assumed that the teleost retina shows continuous and active proliferative and neurogenic activity throughout life. However, when delving into the teleost literature, one finds that assumptions about a highly active and continuous proliferation in the adult retina are based on studies in which proliferation was not quantified in a comparative way at the different life stages or was mainly studied in juveniles/young adults. Here, we performed a systematic and comparative study of the constitutive proliferative activity of the retina from early developing (2 days post-fertilisation) to aged (up to 3–4 years post-fertilisation) zebrafish. The mitotic activity and cell cycle progression were analysed by using immunofluorescence against pH3 and PCNA, respectively. We observed a decline in the cell proliferation in the retina with ageing despite the occurrence of a wave of secondary proliferation during sexual maturation. During this wave of secondary proliferation, the distribution of proliferating and mitotic cells changes from the inner to the outer nuclear layer in the central retina. Importantly, in aged zebrafish, there is a virtual disappearance of mitotic activity. Our results showing a decline in the proliferative activity of the zebrafish retina with ageing are of crucial importance since it is generally assumed that the fish retina has continuous proliferative activity throughout life.
Collapse
|
4
|
DeOliveira-Mello L, Mack AF, Lara JM, Arévalo R. Cultures of glial cells from optic nerve of two adult teleost fish: Astatotilapia burtoni and Danio rerio. J Neurosci Methods 2021; 353:109096. [PMID: 33581217 DOI: 10.1016/j.jneumeth.2021.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND In vitro studies are very useful to increase the knowledge of different cell types and could be the key to understand cell metabolism and function. Fish optic nerves (ON) can recover visual functions by reestablishing its structure and reconnecting the axons of ganglion cells. This is because fish show spontaneous regeneration of the central nervous system which does not occur in mammals. In addition, several studies have indicated that glial cells of ON have different properties in comparison to the glial cells from brain or retina. Consequently, providing an in vitro tool will be highly beneficial to increase the knowledge of these cells. NEW METHOD We developed a cell culture protocol to isolate glial cells from ON of two teleost fish species, Danio rerio and Astatotilapia burtoni. RESULTS The optimized protocol allowed us to obtain ON cells and brain-derived cells from adult teleost fish. These cells were characterized as glial cells and their proprieties in vitro were analyzed.Comparison with Existing Method(s): Although it is striking that ON glial cells show peculiarities, their study in vitro has been limited by the only published protocol going back to the 1990s. Our protocol makes glial cells of different fish species available for experiments and studies to increase the understanding of these glial cell types. CONCLUSIONS This validated and effective in vitro tool increases the possibilities on studies of glial cells from fish ON which implies a reduction in animal experimentation.
Collapse
Affiliation(s)
- Laura DeOliveira-Mello
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain.
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis University of Tübingen Tübingen, Germany
| | - Juan M Lara
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain
| | - Rosario Arévalo
- Dept. Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León University of Salamanca Salamanca, Spain
| |
Collapse
|
5
|
Karahan E, Abdelhakim A, Durmaz C, Tezel TH. Relief of Cystoid Macular Edema-Induced Focal Axonal Compression with Anti-Vascular Endothelial Growth Factor Treatment. Transl Vis Sci Technol 2020; 9:18. [PMID: 32818105 PMCID: PMC7396171 DOI: 10.1167/tvst.9.4.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose To evaluate the mechanical compression of retinal nerve fiber layer (RNFL) by intraretinal cysts in macular edema and its relief with anti-vascular endothelial growth factor (anti-VEGF) treatment. Methods Optical coherence tomography scans were used to measure RNFL thickness and reflectance at seven preselected points at and around the peak of the edema before and after anti-VEGF treatment in 10 patients (11 eyes) with branch retina vein occlusion (BRVO) and diabetic macular edema (DME). Scans through nonedematous retina and from the fellow eyes were taken as controls. Correlations were sought between the changes in retinal and RNFL thickness, RNFL reflectance, and the size of the intraretinal cysts. Results Postinjection RNFL thickness decreased significantly only at peak point of the edema (18.1 ± 2.7 vs. 13.8 ± 1.2 µm; P = 0.038), at its nasal edge (20.1 ± 2.7 vs. 15.5 ± 1.4 µm; P = 0.026), and 500 µm away from its nasal border (35.7 ± 6.0 vs. 20.1 ± 2.7 µm; P = 0.006) suggesting focal stagnation of the axoplasmic flow owing to compression at its peak point. Significant postinjection decreases in RNFL reflectivity were also noted at peak point of the cyst (164.9 ± 10.3 vs. 141.5 ± 12.6 arbitrary units [AU]; P = 0.037), at its nasal edge (166.8 ± 7.8 vs. 135.1 ± 10.2 AU; P = 0.02), and 1500 µm away from temporal edge (160.2 ± 6.2 vs. 141.1 ± 6.4 AU; P = 0.022). Cyst proximity to RNFL (D50 = 50 µm) was the only determinant significantly affecting the magnitude of the RNFL thickness change after anti-VEGF treatment (P = 0.001). Conclusions Intraretinal cysts due to BRVO and DME locally compress overlying axons and induce anatomic changes suggestive of axoplasmic stagnation. This compression can be relieved with anti-VEGF treatment. Translational Relevance Focal compression of RFNL by retinal cysts may indicate a need for early treatment of macular edema to prevent axonal loss, especially in patients with low axonal reserve
Collapse
Affiliation(s)
- Eyyup Karahan
- Department of Ophthalmology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.,Department of Ophthalmology, Balikesir University, Balikesir, Turkey
| | - Aliaa Abdelhakim
- Department of Ophthalmology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ceren Durmaz
- Department of Ophthalmology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.,Department of Ophthalmology, Dokuz Eylul University, Izmir, Turkey
| | - Tongalp H Tezel
- Department of Ophthalmology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
6
|
Beneficial and detrimental effects of the phytochemical naringenin on rainbow trout intestinal epithelial cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
DeOliveira-Mello L, Lara JM, Arevalo R, Velasco A, Mack AF. Sox2 expression in the visual system of two teleost species. Brain Res 2019; 1722:146350. [DOI: 10.1016/j.brainres.2019.146350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
8
|
Xu H, Liu Y, Wang D, Zhang Z. Shenmai injection maintains blood-brain barrier integrity following focal cerebral ischemia via modulating the expression and trafficking of occludin in lipid rafts. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:55-63. [PMID: 30902744 DOI: 10.1016/j.jep.2019.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenmai injection (SMI), a traditional Chinese herbal medicine is widely used for the clinical treatment of cerebral infarction in China. AIM OF THE STUDY Tight junctions (TJs) are major components of the blood-brain barrier (BBB) that physically restrict the paracellular diffusion of blood-borne substances between endothelial cells into the CNS. TJ proteins are associated with cholesterol-enriched regions of plasma membrane known as lipid rafts, which are critical for the trafficking, positioning and function of TJ proteins. In this study, we investigated the effect of SMI on the expression and trafficking of the key TJ-associated protein, occludin, in lipid rafts. MATERIALS AND METHODS Using a neutral pH, rat cerebral microvessels were subjected to detergent-free density-gradient fractionation to isolate lipid rafts containing occludin. Transmission electron microscopy (TEM) was performed to study the effects of drug administration on ultrastructural changes to TJs. Western blotting (WB), immunofluorescence (IF), and co-immunoprecipitation (COIP) were used to observe the localization and function of TJ-associated proteins. RESULTS We successfully isolated cerebral microvessels and separated lipid rafts from plasma membranes. With SMI treatment, extravasation of FITC-albumin decreased around the cerebral vessels by IF, the tight junctions were found to still be intact and the basement membrane appeared to be of uniform thickness in TEM. Compared with the untreated group, the co-expression of flotillin-1 and occludin in microvascular endothelial cells was increased and distributed continuously in SMI treatment as shown in double label IF. SMI significantly increased the translocation of occludin to lipid raft fractions by WB and COIP. CONCLUSIONS SMI helps maintain the proper assembly of the TJ multiprotein complex in lipid rafts, thereby helping to preserve BBB functional integrity during focal cerebral ischemic insult. Our findings enhance our understanding of the mechanisms underlying the neuroprotective effect of SMI in cerebral ischemia.
Collapse
Affiliation(s)
- Huaming Xu
- Department of Integrated Traditional and Western Medicine, Xiangya Hospital of Central South University, No.87 Xiangya Road, Changsha, Hunan Province, 410008, China; Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan Province, 450046, China.
| | - Yuan Liu
- Beijing Hongci Healthcare Investment Management Co., Ltd., 89 Jinbao Street, Dongcheng District, Beijing, 100005, China.
| | - Dongsheng Wang
- Department of Integrated Traditional and Western Medicine, Xiangya Hospital of Central South University, No.87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Zhenqiang Zhang
- Henan University of Chinese Medicine, No.156 Jinshui East Road, Zhengzhou, Henan Province, 450046, China.
| |
Collapse
|