1
|
Xu YL, Xia YT, Zhang MM, Li YJ, Tao XX, Li K, Yang QQ, Tian X, Wu JB, Shi YT, Wang JY, Zeng XY. Red nucleus mGluR4 and mGluR8 inhibit nociception and the development of neuropathic pain by restraining the expressions of TNF-α and IL-1β. Neuropharmacology 2025; 271:110387. [PMID: 40010564 DOI: 10.1016/j.neuropharm.2025.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/08/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Metabotropic glutamate receptors (mGluR) participate in pain modulation and mediate different effects in nociceptive stimuli, relying on the receptor subtype activated and its anatomical location. Here, we addressed the functions of mGluR Ⅲ group (mGluR4, mGluR6, mGluR7, and mGluR8) in the red nucleus (RN) in nociception and the development of neuropathic pain induced by spared nerve injury (SNI) using male rats. Our results showed that mGluR4, mGluR7, and mGluR8, except for mGluR6, were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the expressions of mGluR4 and mGluR8 rather than mGluR7 were reduced in the RN contralateral to the nerve lesion. Unilateral administration of mGluR Ⅲ antagonist MSOP to the RN of normal rats decreased the PWT of contralateral hindpaw and evoked pronounced mechanical allodynia, which was blocked by mGluR4 agonist VU0155041 or mGluR8 agonist AZ12216052 instead of mGluR7 agonist AMN082. Moreover, administration of VU0155041 or AZ12216052 to the RN contralateral to the nerve injury at 2 weeks post-SNI alleviated SNI-induced neuropathic pain. Further studies indicated that administration of MSOP to the RN of normal rats increased the expressions of nociceptive factors TNF-α and IL-1β, which were blocked by VU0155041 or AZ12216052 instead of AMN082. Additionally, administration of VU0155041 or AZ12216052 to the RN at 2 weeks post-SNI inhibited the overexpressions of TNF-α and IL-1β induced by SNI. These findings suggest that red nucleus mGluR4 and mGluR8 instead of mGluR7 inhibit nociception and the development of neuropathic pain by restraining the expressions of TNF-α and IL-1β.
Collapse
Affiliation(s)
- Ya-Li Xu
- Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yu-Tong Xia
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Miao-Miao Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yue-Jia Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao-Xia Tao
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ke Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ji-Bo Wu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China; Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ya-Ting Shi
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Karsan N, Luiza Bastos A, Goadsby PJ. Glutamate as a Therapeutic Substrate in Migraine. Int J Mol Sci 2025; 26:3023. [PMID: 40243659 PMCID: PMC11988557 DOI: 10.3390/ijms26073023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Recurrent and intense headache is a well appreciated cardinal feature of migraine, a common and incapacitating neurological disorder. Often, there are associated canonical sensory abnormalities, such as light and sound sensitivity, as well as associated nausea. Given this phenotype of disordered sensory processing and, in a third of patients, the phenomenon called aura accompanying migraine attacks, it has been suggested that the pathophysiology of migraine is likely to involve glutamate, the main excitatory neurotransmitter in the central nervous system (CNS). Glutamate plays a role in nociception, central sensitization, and cortical spreading depression (CSD), three processes that are deemed important in migraine biology. With an emphasis on the therapeutic potential of targeting various glutamate receptors in migraine, this review will discuss the currently available literature and emerging findings on the role of targeting glutamatergic pathways for the treatment of migraine. A thorough literature review was carried out on the functions of both metabotropic glutamate receptors (mGluRs), and the ionotropic glutamate receptors (NMDA, AMPA, and kainate) in migraine pathogenesis. The ever-present need for new treatments, the role of glutamate in the migraine aura phenomenon, and the consequences of monogenic migraine mutations on mediating prolonged, complex, or permanent aura are all discussed, culminating in a suggestion that glutamatergic targeting may hold particular promise in the management of migraine aura. There are plausible roles for metabotropic receptors in regulating pain processing in important migraine-related brain structures, like the thalamus and trigeminal nucleus. Similarly, ionotropic receptors contribute to excitatory neurotransmission and neuronal hyperexcitability. Recent studies have shown preclinical and early clinical results for treatments targeting these receptors, but there are still significant issues with treatment response, including drug transport, side effects, and efficacy. With ongoing and emerging discoveries in the field, there is increasing promise of new migraine medications targeting glutamate receptors. For bench to bedside translation in this area, continued study of the molecular basis of migraine, receptor subtypes, and exploration of potential drug delivery methods are needed.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
| | - Alves Luiza Bastos
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
| | - Peter J. Goadsby
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
- NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Shen J, Guo Y, Cao R. The relationship between amino acids and gastroesophageal reflux disease: evidence from a mendelian randomization analysis combined with a meta-analysis. Front Immunol 2025; 16:1420132. [PMID: 40103821 PMCID: PMC11914792 DOI: 10.3389/fimmu.2025.1420132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/06/2025] [Indexed: 03/20/2025] Open
Abstract
Background Gastroesophageal Reflux Disease (GERD), a prevalent gastrointestinal disorder globally, exhibits variable prevalence across regions, with higher frequencies observed in Western nations and lower in Asian countries. Key contributing factors encompass unhealthy eating patterns, tobacco use, consumption of alcohol, excess weight, and obesity, along with health conditions such as gestation and diabetes. Common manifestations include heartburn and a burning discomfort behind the breastbone, which, without appropriate management, can progress to more severe issues like esophagitis and Barrett's esophagus. Approaches to management and prevention primarily involve modifications in lifestyle, pharmacotherapy, and surgical interventions when deemed necessary. Utilizing Omics Mendelian Randomization (OMR) to investigate the causative links between genetic variants and diseases provides insights into the biological underpinnings of gastroesophageal reflux diseasec. It aids in pinpointing novel targets for therapy. The influence of amino acids in gastroesophageal reflux disease demonstrates the complexity, having the potential to both mitigate and intensify symptoms, underscoring the significance of personalized nutrition and therapeutic strategies. Methods This study is based on the omics mendelian randomization method, coupled with meta-analysis techniques, to enhance the precision of the research findings. Furthermore, a reverse validation procedure was implemented to validate the association between the positive findings and disease outcomes further. Throughout the study, multiple correction measures were employed to ensure the accuracy and reliability of the results. Results Based on our research methodology, we have ultimately discovered that glutamate exacerbates gastroesophageal reflux disease, increasing its risk. The data supporting this includes analysis of 20 amino acids and outcomes from the Finnish database, which showed that glutamate had an odds ratio (OR) for gastroesophageal reflux disease risk of 1.175(95% confidence interval (CI): 1.000 ~ 1.380, P = 0.05), and a beta value of 0.161. Analysis with outcomes from the UK database indicated that glutamate had an OR for gastroesophageal reflux disease risk of 1.399(95% CI: 1.060 ~ 1.847, P = 0.018) and a beta value of 0.336. After conducting a meta-analysis of the MR results and applying multiple corrections, the combined OR of glutamate for gastroesophageal reflux disease risk was 1.227 (95% CI: 1.068 ~ 1.411 P = 0.043); the beta values of the three primary MR outcomes were consistent in direction. Building on the positive results, reverse validation with outcome data from two different database sources for glutamate showed: in the Finngen database, with gastroesophageal reflux disease as the exposure, the Inverse Variance Weighted (IVW) method resulted in a P-value of 0.059; in the IEU database under the same condition, the IVW P-value was 1.433. Conclusions Glutamate may increase the risk and exacerbate the progression of gastroesophageal reflux disease through mechanisms such as impacting the nervous system and promoting inflammatory responses. Delving into the role of glutamate in gastroesophageal reflux disease enriches our understanding of the disease's biological mechanisms and may offer new strategies for clinical treatment and nutritional management. This insight can aid in developing healthier dietary plans, thereby benefiting patients.
Collapse
Affiliation(s)
- Jianjun Shen
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Yongqing Guo
- Capital University of Physical Education and Sports, Beijing, China
| | - Rui Cao
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| |
Collapse
|
4
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. Metabotropic Glutamate Receptor 5: A Potential Target for Neuropathic Pain Treatment. Curr Neuropharmacol 2025; 23:276-294. [PMID: 39411936 PMCID: PMC11808587 DOI: 10.2174/1570159x23666241011163035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 02/12/2025] Open
Abstract
Neuropathic pain, a multifaceted and incapacitating disorder, impacts a significant number of individuals globally. Despite thorough investigation, the development of efficacious remedies for neuropathic pain continues to be a formidable task. Recent research has revealed the potential of metabotropic glutamate receptor 5 (mGlu5) as a target for managing neuropathic pain. mGlu5 is a receptor present in the central nervous system that has a vital function in regulating synaptic transmission and the excitability of neurons. This article seeks to investigate the importance of mGlu5 in neuropathic pain pathways, analyze the pharmacological approach of targeting mGlu5 for neuropathic pain treatment, and review the negative allosteric mGlu5 modulators used to target mGlu5. By comprehending the role of mGlu5 in neuropathic pain, we can discover innovative treatment approaches to ease the distress endured by persons afflicted with this incapacitating ailment.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
5
|
AboTaleb HA, Alghamdi BS. Metformin and fibromyalgia pathophysiology: current insights and promising future therapeutic strategies. Mol Biol Rep 2024; 52:60. [PMID: 39692938 DOI: 10.1007/s11033-024-10159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Fibromyalgia (FM) is a complex, chronic pain syndrome characterized by widespread musculoskeletal pain, fatigue, and cognitive disturbances. Despite its prevalence, the pathophysiology of FM remains poorly understood, with current treatments often providing limited relief. Recent studies have suggested that metformin, a widely used antidiabetic drug, may have potential therapeutic benefits for chronic pain conditions, including FM. This review aims to provide current insights into the role of metformin in FM pathophysiology, focusing on its neurotransmitter-modulating and anti-inflammatory effects. Metformin has been shown to mitigate neuroinflammation, protect neural tissues, and modulate key neurotransmitters involved in pain and mood regulation. These effects are particularly evident in animal models, where metformin has been observed to reduce pain sensitivity, improve mood-related behaviors, and decrease levels of pro-inflammatory cytokines like interleukin 1-beta (IL-1β). Additionally, the ability of metformin to influence serotonin, norepinephrine, and glutamate levels suggests a potential mechanism for its analgesic and mood-stabilizing effects. However, the current evidence is largely preclinical, and further research is needed to confirm these findings in human studies. This review aims to encourage researchers to explore the association between metformin and FM more deeply, with the hope of uncovering new therapeutic strategies that could offer relief to FM patients.
Collapse
Affiliation(s)
- Hanin Abdulbaset AboTaleb
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Singh M, Kim A, Young A, Nguyen D, Monroe CL, Ding T, Gray D, Venketaraman V. The Mechanism and Inflammatory Markers Involved in the Potential Use of N-acetylcysteine in Chronic Pain Management. Life (Basel) 2024; 14:1361. [PMID: 39598160 PMCID: PMC11595559 DOI: 10.3390/life14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
N-acetylcysteine (NAC) has established use as an antidote for acetaminophen overdose and treatment for pulmonary conditions and nephropathy. It plays a role in regulating oxidative stress and interacting with various cytokines including IL-1β, TNFα, IL-8, IL-6, IL-10, and NF-κB p65. The overexpression of reactive oxygen species (ROS) is believed to contribute to chronic pain states by inducing inflammation and accelerating disease progression, favoring pain persistence in neuropathic and musculoskeletal pain conditions. Through a comprehensive review, we aim to explore the mechanisms and inflammatory pathways through which NAC may manage neuropathic and musculoskeletal pain. Evidence suggests NAC can attenuate neuropathic and musculoskeletal pain through mechanisms such as inhibiting matrix metalloproteinases (MMPs), reducing reactive oxygen species (ROS), and enhancing glutamate transport. Additionally, NAC may synergize with opioids and other pain medications, potentially reducing opioid consumption and enhancing overall pain management. Further research is needed to fully elucidate its therapeutic potential and optimize its use in pain management. As an adjuvant therapy, NAC shows potential for chronic pain management, offering significant benefits for public health.
Collapse
Affiliation(s)
- Mona Singh
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Alina Kim
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Amelie Young
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Deanna Nguyen
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Cynthia L. Monroe
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| | - Tiffany Ding
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Dennis Gray
- Vigilant Anesthesiology, PA, Tampa, FL 33193, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| |
Collapse
|
7
|
Wang WT, Feng F, Zhang MM, Tian X, Yang QQ, Li YJ, Tao XX, Xu YL, Dou E, Wang JY, Zeng XY. Red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1β. Neurochem Int 2024; 179:105840. [PMID: 39181245 DOI: 10.1016/j.neuint.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Our previous study has verified that activation of group Ⅰ metabotropic glutamate receptors (mGluRⅠ) in the red nucleus (RN) facilitate the development of neuropathological pain. Here, we further discussed the functions and possible molecular mechanisms of red nucleus mGluR Ⅱ (mGluR2 and mGluR3) in the development of neuropathological pain induced by spared nerve injury (SNI). Our results showed that mGluR2 and mGluR3 both were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the protein expression of mGluR2 rather than mGluR3 was significantly reduced in the RN contralateral to the nerve lesion. Injection of mGluR2/3 agonist LY379268 into the RN contralateral to the nerve injury at 2 weeks post-SNI significantly attenuated SNI-induced neuropathological pain, this effect was reversed by mGluR2/3 antagonist EGLU instead of selective mGluR3 antagonist β-NAAG. Intrarubral injection of LY379268 did not alter the PWT of contralateral hindpaw in normal rats, while intrarubral injection of EGLU rather than β-NAAG provoked a significant mechanical allodynia. Further studies indicated that the expressions of nociceptive factors TNF-α and IL-1β in the RN were enhanced at 2 weeks post-SNI. Intrarubral injection of LY379268 at 2 weeks post-SNI significantly suppressed the overexpressions of TNF-α and IL-1β, these effects were reversed by EGLU instead of β-NAAG. Intrarubral injection of LY379268 did not influence the protein expressions of TNF-α and IL-1β in normal rats, while intrarubral injection of EGLU rather than β-NAAG significantly boosted the expressions of TNF-α and IL-1β. These findings suggest that red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1β. mGluR Ⅱ may be potential targets for drug development and clinical treatment of neuropathological pain.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Fan Feng
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Miao-Miao Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yue-Jia Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao-Xia Tao
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ya-Li Xu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China; Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - E Dou
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
8
|
Tian X, Wang WT, Zhang MM, Yang QQ, Xu YL, Wu JB, Xie XX, Wang JY, Wang JY. Red nucleus mGluR1 and mGluR5 facilitate the development of neuropathic pain through stimulating the expressions of TNF-α and IL-1β. Neurochem Int 2024; 178:105786. [PMID: 38843952 DOI: 10.1016/j.neuint.2024.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Our previous study has identified that glutamate in the red nucleus (RN) facilitates the development of neuropathic pain through metabotropic glutamate receptors (mGluR). Here, we further explored the actions and possible molecular mechanisms of red nucleus mGluR Ⅰ (mGluR1 and mGluR5) in the development of neuropathic pain induced by spared nerve injury (SNI). Our data indicated that both mGluR1 and mGluR5 were constitutively expressed in the RN of normal rats. Two weeks after SNI, the expressions of mGluR1 and mGluR5 were significantly boosted in the RN contralateral to the nerve injury. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN contralateral to the nerve injury at 2 weeks post-SNI significantly ameliorated SNI-induced neuropathic pain. However, unilateral administration of mGluRⅠ agonist DHPG to the RN of normal rats provoked a significant mechanical allodynia, this effect could be blocked by LY367385 or MTEP. Further studies indicated that the expressions of TNF-α and IL-1β in the RN were also elevated at 2 weeks post-SNI. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN at 2 weeks post-SNI significantly inhibited the elevations of TNF-α and IL-1β. However, administration of mGluR Ⅰ agonist DHPG to the RN of normal rats significantly enhanced the expressions of TNF-α and IL-1β, these effects were blocked by LY367385 or MTEP. These results suggest that activation of red nucleus mGluR1 and mGluR5 facilitate the development of neuropathic pain by stimulating the expressions of TNF-α and IL-1β. mGluR Ⅰ maybe potential targets for drug development and clinical treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xue Tian
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China; Shaanxi Blood Center, Xi'an, 710061, Shaanxi, China
| | - Wen-Tao Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Miao-Miao Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ya-Li Xu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ji-Bo Wu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xin-Xin Xie
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Jing-Yuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
9
|
Wiseman RL, Bigos KL, Dastgheyb RM, Barker PB, Rubin LH, Slusher BS. Brain N -acetyl-aspartyl-glutamate is associated with cognitive function in older virally suppressed people with HIV. AIDS 2024; 38:1003-1011. [PMID: 38411600 PMCID: PMC11062820 DOI: 10.1097/qad.0000000000003871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Cognitive impairment persists in virally suppressed people with HIV (VS-PWH) especially in higher order domains. One cortical circuit, linked to these domains, is regulated by N -acetyl-aspartyl glutamate (NAAG), the endogenous agonist of the metabotropic glutamate receptor 3. The enzyme glutamate carboxypeptidase II (GCPII) catabolizes NAAG and is upregulated in aging and disease. Inhibition of GCPII increases brain NAAG and improves learning and memory in rodent and primate models. DESIGN As higher order cognitive impairment is present in VS-PWH, and NAAG has not been investigated in earlier magnetic resonance spectroscopy studies (MRS), we investigated if brain NAAG levels measured by MRS were associated with cognitive function. METHODS We conducted a retrospective analysis of 7-Tesla MRS data from a previously published study on cognition in older VS-PWH. The original study did not separately quantify NAAG, therefore, work for this report focused on relationships between regional NAAG levels in frontal white matter (FWM), left hippocampus, left basal ganglia and domain-specific cognitive performance in 40 VS-PWH after adjusting for confounds. Participants were older than 50 years, negative for affective and neurologic disorders, and had no prior 3-month psychoactive-substance use. RESULTS Higher NAAG levels in FWM were associated with better attention/working memory. Higher left basal ganglia NAAG related to better verbal fluency. There was a positive relationship between hippocampal NAAG and executive function which lost significance after correction for confounds. CONCLUSION These data suggest brain NAAG serves as a biomarker of cognition in VS-PWH. Pharmacological modulation of brain NAAG warrants investigation as a therapeutic approach for cognitive deficits in VS-PWH.
Collapse
Affiliation(s)
- Robyn L. Wiseman
- Department of Pharmacology and Molecular Sciences
- Johns Hopkins Drug Discovery
- Department of Medicine, Division of Clinical Pharmacology
| | - Kristin L. Bigos
- Department of Pharmacology and Molecular Sciences
- Department of Medicine, Division of Clinical Pharmacology
- Department of Psychiatry and Behavioral Sciences
| | | | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Sciences
| | - Leah H. Rubin
- Department of Psychiatry and Behavioral Sciences
- Department of Neurology
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
| | - Barbara S. Slusher
- Department of Pharmacology and Molecular Sciences
- Johns Hopkins Drug Discovery
- Department of Medicine, Division of Clinical Pharmacology
- Department of Psychiatry and Behavioral Sciences
- Department of Neurology
- Department of Oncology
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Nichols SJ, Yanes JA, Reid MA, Robinson JL. 7 T characterization of excitatory and inhibitory systems of acute pain in healthy female participants. NMR IN BIOMEDICINE 2024; 37:e5088. [PMID: 38140895 DOI: 10.1002/nbm.5088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Current understanding of the physiological underpinnings of normative pain processing is incomplete. Enhanced knowledge of these systems is necessary to advance our understanding of pain processes as well as to develop effective therapeutic interventions. Previous neuroimaging research suggests a network of interrelated brain regions that seem to be implicated in the processing and experience of pain. Among these, the dorsal anterior cingulate cortex (dACC) plays an important role in the affective aspects of pain signals. The current study leveraged functional MRS to investigate the underlying dynamic shifts in the neurometabolic signature of the human dACC at rest and during acute pain. Results provide support for increased glutamate levels following acute pain administration. Specifically, a 4.6% increase in glutamate was observed during moderate pressure pain compared with baseline. Exploratory analysis also revealed meaningful changes in dACC gamma aminobutyric acid in response to pain stimulation. These data contribute toward the characterization of neurometabolic shifts, which lend insight into the role of the dACC in the pain network. Further research in this area with larger sample sizes could contribute to the development of novel therapeutics or other advances in pain-related outcomes.
Collapse
Affiliation(s)
- Steven J Nichols
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Julio A Yanes
- Exponent Inc., Washington, District of Columbia, USA
| | - Meredith A Reid
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| | - Jennifer L Robinson
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
11
|
Maldonado C, Guevara N, Acuña S, Fagiolino P, Vázquez M. Endogenous molecules in neuroprotection: Acetyl-L-carnitine. NATURAL MOLECULES IN NEUROPROTECTION AND NEUROTOXICITY 2024:475-491. [DOI: 10.1016/b978-0-443-23763-8.00056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Xie RG, Xu GY, Wu SX, Luo C. Presynaptic glutamate receptors in nociception. Pharmacol Ther 2023; 251:108539. [PMID: 37783347 DOI: 10.1016/j.pharmthera.2023.108539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Sheng-Xi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Yang L, Liu B, Zheng S, Xu L, Yao M. Understanding the initiation, delivery and processing of bone cancer pain from the peripheral to the central nervous system. Neuropharmacology 2023; 237:109641. [PMID: 37392821 DOI: 10.1016/j.neuropharm.2023.109641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Bone cancer pain is a complex condition characterized by persistent, sudden, spontaneous pain accompanied by hyperalgesia that typically arises from bone metastases or primary bone tumors, causing severe discomfort and significantly diminishing cancer patients' quality of life and confidence in their ability to overcome the disease. It is widely known that peripheral nerves are responsible for detecting harmful stimuli, which are then transmitted to the brain via the spinal cord, resulting in the perception of pain. In the case of bone cancer, tumors and stromal cells within the bone marrow release various chemical signals, including inflammatory factors, colony-stimulating factors, chemokines, and hydrogen ions. Consequently, the nociceptors located at the nerve endings within the bone marrow sense these chemical signals, generating electrical signals that are then transmitted to the brain through the spinal cord. Subsequently, the brain processes these electrical signals in a complex manner to create the sensation of bone cancer pain. Numerous studies have investigated the transmission of bone cancer pain from the periphery to the spinal cord. However, the processing of pain information induced by bone cancer within the brain remains unclear. With the continuous advancements in brain science and technology, the brain mechanism of bone cancer pain would become more clearly understood. Herein, we focus on summarizing the peripheral nerve perception of the spinal cord transmission of bone cancer pain and provide a brief overview of the ongoing research regarding the brain mechanisms involved in bone cancer pain.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China
| | - Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, No. 1882 Zhong-Huan-Nan Road, Jiaxing, 314001, China.
| |
Collapse
|
14
|
Bai T, Chen H, Hu W, Liu J, Lin X, Chen S, Luo F, Yang X, Chen J, Li C. Amygdala Metabotropic Glutamate Receptor 1 Influences Synaptic Transmission to Participate in Fentanyl-Induced Hyperalgesia in Rats. Cell Mol Neurobiol 2023; 43:1401-1412. [PMID: 35798932 PMCID: PMC11414450 DOI: 10.1007/s10571-022-01248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
The underlying mechanisms of opioid-induced hyperalgesia (OIH) remain unclear. Herein, we found that the protein expression of metabotropic glutamate receptor 1 (mGluR1) was significantly increased in the right but not in the left laterocapsular division of central nucleus of the amygdala (CeLC) in OIH rats. In CeLC neurons, the frequency and the amplitude of mini-excitatory postsynaptic currents (mEPSCs) were significantly increased in fentanyl group which were decreased by acute application of a mGluR1 antagonist, A841720. Finally, the behavioral hypersensitivity could be reversed by A841720 microinjection into the right CeLC. These results show that the right CeLC mGluR1 is an important factor associated with OIH that enhances synaptic transmission and could be a potential drug target to alleviate fentanyl-induced hyperalgesia.
Collapse
Affiliation(s)
- Tianyu Bai
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Hengling Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Wenwu Hu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Jingtao Liu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Xianguang Lin
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Su Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Fang Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaofei Yang
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chenhong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China.
| |
Collapse
|
15
|
Group II metabotropic glutamate receptor activation suppresses ATP currents in rat dorsal root ganglion neurons. Neuropharmacology 2023; 227:109443. [PMID: 36709909 DOI: 10.1016/j.neuropharm.2023.109443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
P2X3 receptors and group II metabotropic glutamate receptors (mGluRs) have been found to be expressed in primary sensory neurons. P2X3 receptors participate in a variety of pain processes, while the activation of mGluRs has an analgesic effect. However, it's still unclear whether there is a link between them in pain. Herein, we reported that the group II mGluR activation inhibited the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Group II mGluR agonist LY354740 concentration-dependently decreased P2X3 receptor-mediated and α,β-methylene-ATP (α,β-meATP)-evoked inward currents in DRG neurons. LY354740 significantly suppressed the maximum response of P2X3 receptor to α,β-meATP, but did not change their affinity. Inhibition of ATP currents by LY354740 was blocked by the group II mGluR antagonist LY341495, also prevented by the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the cAMP analog 8-Br-cAMP, or the protein kinase A (PKA) inhibitor H-89. Moreover, LY354740 decreased α,β-meATP-induced membrane potential depolarization and action potential bursts in DRG neurons. Finally, intraplantar injection of LY354740 also relieved α,β-meATP-induced spontaneous nociceptive behaviors and mechanical allodynia in rats by activating peripheral group Ⅱ mGluRs. These results indicated that peripheral group II mGluR activation inhibited the functional activity of P2X3 receptors via a Gi/o protein and cAMP/PKA signaling pathway in rat DRG neurons, which revealed a novel mechanism underlying analgesic effects of peripheral group II mGluRs. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
|
16
|
Mei X, Yin C, Pan Y, Chen L, Wu C, Li X, Feng Z. The role of ectopic P granules protein 5 homolog (EPG5) in DHPG-induced pain sensitization in mice. J Neurochem 2023; 165:196-210. [PMID: 36748629 DOI: 10.1111/jnc.15779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Nociplastic pain is a severe health problem, while its mechanisms are still unclear. (R, S)-3,5-Dihydroxyphenylglycine (DHPG) is a group I metabotropic glutamate receptor (mGluR) agonist that can cause central sensitization, which plays a role in nociplastic pain. In this study, after intrathecal injection of 25 nmol DHPG for three consecutive days, whole proteins were extracted from the L4~6 lumbar spinal cord of mice 2 h after intrathecal administration on the third day for proteomics analysis. Based on the results, 15 down-regulated and 20 up-regulated proteins were identified in mice. Real-time quantitative PCR (RT-qPCR) and western blotting (WB) revealed that the expression of ectopic P granules protein 5 homolog (EPG5) mRNA and protein were significantly up-regulated compared with the control group, which was consistent with the proteomics results. Originally identified in the genetic screening of Caenorhabditis elegans, EPG5 is mainly involved in regulating autophagy in the body, and in our study, it was mainly expressed in spinal neurons, as revealed by immunohistochemistry staining. After the intrathecal injection of 8 μL adeno-associated virus (AAV)-EPG5 short hairpin RNA (shRNA) to knock down spinal EPG5, the hyperalgesia caused by DHPG was relieved. Altogether, these results suggest that EPG5 plays an important role in DHPG-induced pain sensitization in mice.
Collapse
Affiliation(s)
- Xiangyang Mei
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Lei Chen
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Wu
- Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangyao Li
- Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Group II metabotropic glutamate receptor activation attenuates acid-sensing ion channel currents in rat primary sensory neurons. J Biol Chem 2023; 299:102953. [PMID: 36731795 PMCID: PMC9976456 DOI: 10.1016/j.jbc.2023.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.
Collapse
|
18
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
19
|
Alipour N, Fallahnezhad S, Bagheri J, Babaloo H, Tahmasebi F, Sazegar G, Haghir H. Expression of GABA Aα1, GABA B1, and mGluR2 receptors in the lateral geniculate body of male neonates born to diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:805-811. [PMID: 37396950 PMCID: PMC10311974 DOI: 10.22038/ijbms.2023.69668.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 07/04/2023]
Abstract
Objectives Diabetes during gestation is one of the most common pregnancy complications and has adverse effects on offspring, including a negative impact on the offspring's central nervous system (CNS). Diabetes is a metabolic disease associated with visual impairment. Due to the importance of the lateral geniculate body (LGB) in the visual pathway, the present study examined the effect of maternal diabetes on the expression of gamma-aminobutyric acid (GABAAα1 and GABAB1) and metabotropic Glutamate (mGlu2) receptors in the LGB of male neonates of diabetic rats. Materials and Methods Diabetes was induced in female adult rats by a single intraperitoneal dose of streptozotocin (STZ) 65 (mg/kg). In the Insulin-treated diabetic rats, diabetes was controlled by subcutaneous NPH-insulin injection daily. After mating and delivery, male offspring were killed by carbon dioxide gas inhalation at P0, P7, and P14 (postnatal days 0, 7, and 14). The expression of GABAAα1, GABAB1, and mGluR2 in the LGB of male neonates was determined using the immunohistochemistry (IHC) method. Results The expression of GABAAα1 and GABAB1 was significantly reduced, whereas the expression of mGluR2 was markedly increased in the diabetic group compared with the control and insulin-treated groups at P0, P7, and P14. Conclusion The results of the present study showed that induction of diabetes altered the expression of GABAAα1, GABAB1, and mGluR2 in the LGB of male neonates born to diabetic rats at P0, P7, and P14. Moreover, insulin treatment could reverse these effects of diabetes.
Collapse
Affiliation(s)
- Nasim Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Fallahnezhad
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Javad Bagheri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Babaloo
- Regenerative Medicine, Organ Procurement and transplantation Multidisciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghasem Sazegar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Ives A, Dunn HA, Afsari HS, Seckler HDS, Foroutan MJ, Chavez E, Melani RD, Fellers RT, LeDuc RD, Thomas PM, Martemyanov KA, Kelleher NL, Vafabakhsh R. Middle-Down Mass Spectrometry Reveals Activity-Modifying Phosphorylation Barcode in a Class C G Protein-Coupled Receptor. J Am Chem Soc 2022; 144:23104-23114. [PMID: 36475650 PMCID: PMC9785046 DOI: 10.1021/jacs.2c10697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in humans. They mediate nearly all aspects of human physiology and thus are of high therapeutic interest. GPCR signaling is regulated in space and time by receptor phosphorylation. It is believed that different phosphorylation states are possible for a single receptor, and each encodes for unique signaling outcomes. Methods to determine the phosphorylation status of GPCRs are critical for understanding receptor physiology and signaling properties of GPCR ligands and therapeutics. However, common proteomic techniques have provided limited quantitative information regarding total receptor phosphorylation stoichiometry, relative abundances of isomeric modification states, and temporal dynamics of these parameters. Here, we report a novel middle-down proteomic strategy and parallel reaction monitoring (PRM) to quantify the phosphorylation states of the C-terminal tail of metabotropic glutamate receptor 2 (mGluR2). By this approach, we found that mGluR2 is subject to both basal and agonist-induced phosphorylation at up to four simultaneous sites with varying probability. Using a PRM tandem mass spectrometry methodology, we localized the positions and quantified the relative abundance of phosphorylations following treatment with an agonist. Our analysis showed that phosphorylation within specific regions of the C-terminal tail of mGluR2 is sensitive to receptor activation, and subsequent site-directed mutagenesis of these sites identified key regions which tune receptor sensitivity. This study demonstrates that middle-down purification followed by label-free quantification is a powerful, quantitative, and accessible tool for characterizing phosphorylation states of GPCRs and other challenging proteins.
Collapse
Affiliation(s)
- Ashley
N. Ives
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Henry A. Dunn
- Department
of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States,Department
of Pharmacology and Therapeutics, University
of Manitoba, Winnipeg, Manitoba R3E 0T6, Canada,Division
of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen
Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Hamid Samareh Afsari
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Max J. Foroutan
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Erica Chavez
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D. Melani
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T. Fellers
- National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D. LeDuc
- National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul M. Thomas
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kirill A. Martemyanov
- Department
of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Neil L. Kelleher
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208 United States,Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,National
Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60208, United States
| | - Reza Vafabakhsh
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,
| |
Collapse
|
21
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
22
|
Mao LM, Mathur N, Mahmood T, Rajan S, Chu XP, Wang JQ. Phosphorylation and regulation of group II metabotropic glutamate receptors (mGlu2/3) in neurons. Front Cell Dev Biol 2022; 10:1022544. [PMID: 36407098 PMCID: PMC9669598 DOI: 10.3389/fcell.2022.1022544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Group II metabotropic glutamate (mGlu) receptors (mGlu2/3) are Gαi/o-coupled receptors and are primarily located on presynaptic axonal terminals in the central nervous system. Like ionotropic glutamate receptors, group II mGlu receptors are subject to regulation by posttranslational phosphorylation. Pharmacological evidence suggests that several serine/threonine protein kinases possess the ability to regulate mGlu2/3 receptors. Detailed mapping of phosphorylation residues has revealed that protein kinase A (PKA) phosphorylates mGlu2/3 receptors at a specific serine site on their intracellular C-terminal tails in heterologous cells or neurons, which underlies physiological modulation of mGlu2/3 signaling. Casein kinases promote mGlu2 phosphorylation at a specific site. Tyrosine protein kinases also target group II receptors to induce robust phosphorylation. A protein phosphatase was found to specifically bind to mGlu3 receptors and dephosphorylate the receptor at a PKA-sensitive site. This review summarizes recent progress in research on group II receptor phosphorylation and the phosphorylation-dependent regulation of group II receptor functions. We further explore the potential linkage of mGlu2/3 phosphorylation to various neurological and neuropsychiatric disorders, and discuss future research aimed at analyzing novel biochemical and physiological properties of mGlu2/3 phosphorylation.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Nirav Mathur
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Tayyibah Mahmood
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Sri Rajan
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - John Q. Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States,*Correspondence: John Q. Wang,
| |
Collapse
|
23
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
24
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
25
|
Shannonhouse J, Bernabucci M, Gomez R, Son H, Zhang Y, Ai CH, Ishida H, Kim YS. Meclizine and Metabotropic Glutamate Receptor Agonists Attenuate Severe Pain and Ca 2+ Activity of Primary Sensory Neurons in Chemotherapy-Induced Peripheral Neuropathy. J Neurosci 2022; 42:6020-6037. [PMID: 35772967 PMCID: PMC9351649 DOI: 10.1523/jneurosci.1064-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects ∼68% of patients undergoing chemotherapy, causing debilitating neuropathic pain and reducing quality of life. Cisplatin is a commonly used platinum-based chemotherapeutic drug known to cause CIPN, possibly by causing oxidative stress damage to primary sensory neurons. Metabotropic glutamate receptors (mGluRs) are widely hypothesized to be involved in pain processing and pain mitigation. Meclizine is an H1 histamine receptor antagonist known to have neuroprotective effects, including an anti-oxidative effect. Here, we used a mouse model of cisplatin-induced CIPN using male and female mice to test agonists of mGluR8 and Group II mGluR as well as meclizine as interventions to reduce cisplatin-induced pain. We performed behavioral pain tests, and we imaged Ca2+ activity of the large population of dorsal root ganglia (DRG) neurons in vivo For the latter, we used a genetically-encoded Ca2+ indicator, Pirt-GCaMP3, which enabled us to monitor different drug interventions at the level of the intact DRG neuronal ensemble. We found that CIPN increased spontaneous Ca2+ activity in DRG neurons, increased number of Ca2+ transients, and increased hyper-responses to mechanical, thermal, and chemical stimuli. We found that mechanical and thermal pain caused by CIPN was significantly attenuated by the mGluR8 agonist, (S)-3,4-DCPG, the Group II mGluR agonist, LY379268, and the H1 histamine receptor antagonist, meclizine. DRG neuronal Ca2+ activity elevated by CIPN was attenuated by LY379268 and meclizine, but not by (S)-3,4-DCPG. Furthermore, meclizine and LY379268 attenuated cisplatin-induced weight loss. These results suggest that Group II mGluR agonist, mGluR8 agonist, and meclizine are promising candidates as new treatment options for CIPN, and studies of their mechanisms are warranted.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a painful condition that affects most chemotherapy patients and persists several months or longer after treatment ends. Research on CIPN mechanism is extensive but has produced only few clinically useful treatments. Using in vivo GCaMP Ca2+ imaging in live animals over 1800 neurons/dorsal root ganglia (DRG) at once, we have characterized the effects of the chemotherapeutic drug, cisplatin and three treatments that decrease CIPN pain. Cisplatin increases sensory neuronal Ca2+ activity and develops various sensitization. Metabotropic glutamate receptor (mGluR) agonist, LY379268 or the H1 histamine receptor antagonist, meclizine decreases cisplatin's effects on neuronal Ca2+ activity and reduces pain hypersensitivity. Our results and experiments provide insights into cellular effects of cisplatin and drugs preventing CIPN pain.
Collapse
Affiliation(s)
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Chih-Hsuan Ai
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Hirotake Ishida
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry
- Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
26
|
Light-Induced Activation of a Specific Type-5 Metabotropic Glutamate Receptor Antagonist in the Ventrobasal Thalamus Causes Analgesia in a Mouse Model of Breakthrough Cancer Pain. Int J Mol Sci 2022; 23:ijms23148018. [PMID: 35887364 PMCID: PMC9323585 DOI: 10.3390/ijms23148018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Breakthrough cancer pain (BTcP) refers to a sudden and transient exacerbation of pain, which develops in patients treated with opioid analgesics. Fast-onset analgesia is required for the treatment of BTcP. Light-activated drugs offer a novel potential strategy for the rapid control of pain without the typical adverse effects of systemic analgesic drugs. mGlu5 metabotropic glutamate receptor antagonists display potent analgesic activity, and light-induced activation of one of these compounds (JF-NP-26) in the thalamus was found to induce analgesia in models of inflammatory and neuropathic pain. We used an established mouse model of BTcP based on the injection of cancer cells into the femur, followed, 16 days later, by systemic administration of morphine. BTcP was induced by injection of endothelin-1 (ET-1) into the tumor, 20 min after morphine administration. Mice were implanted with optic fibers delivering light in the visible spectrum (405 nm) in the thalamus or prelimbic cortex to locally activate systemically injected JF-NP-26. Light delivery in the thalamus caused rapid and substantial analgesia, and this effect was specific because light delivery in the prelimbic cortex did not relieve BTcP. This finding lays the groundwork for the use of optopharmacology in the treatment of BTcP.
Collapse
|
27
|
Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiol Dis 2022; 168:105697. [DOI: 10.1016/j.nbd.2022.105697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
|
28
|
Yuan G, Dhaynaut M, Lan Y, Guehl NJ, Huynh D, Iyengar SM, Afshar S, Jain MK, Pickett JE, Kang HJ, Wang H, Moon SH, Ondrechen MJ, Wang C, Shoup TM, El Fakhri G, Normandin MD, Brownell AL. Synthesis and Characterization of 5-(2-Fluoro-4-[ 11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2 H-pyrano[2,3- b]pyridine-7-carboxamide as a PET Imaging Ligand for Metabotropic Glutamate Receptor 2. J Med Chem 2022; 65:2593-2609. [PMID: 35089713 PMCID: PMC9434702 DOI: 10.1021/acs.jmedchem.1c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/μmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Dalena Huynh
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Suhasini M Iyengar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Manish Kumar Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Julie E Pickett
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Timothy M Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
29
|
Studtmann C, Ladislav M, Topolski MA, Safari M, Swanger SA. NaV1.1 haploinsufficiency impairs glutamatergic and GABAergic neuron function in the thalamus. Neurobiol Dis 2022; 167:105672. [DOI: 10.1016/j.nbd.2022.105672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
|
30
|
Morland C, Nordengen K. N-Acetyl-Aspartyl-Glutamate in Brain Health and Disease. Int J Mol Sci 2022; 23:ijms23031268. [PMID: 35163193 PMCID: PMC8836185 DOI: 10.3390/ijms23031268] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
N-acetyl-aspartyl-glutamate (NAAG) is the most abundant dipeptide in the brain, where it acts as a neuromodulator of glutamatergic synapses by activating presynaptic metabotropic glutamate receptor 3 (mGluR3). Recent data suggest that NAAG is selectively localized to postsynaptic dendrites in glutamatergic synapses and that it works as a retrograde neurotransmitter. NAAG is released in response to glutamate and provides the postsynaptic neuron with a feedback mechanisms to inhibit excessive glutamate signaling. A key regulator of synaptically available NAAG is rapid degradation by the extracellular enzyme glutamate carboxypeptidase II (GCPII). Increasing endogenous NAAG—for instance by inhibiting GCPII—is a promising treatment option for many brain disorders where glutamatergic excitotoxicity plays a role. The main effect of NAAG occurs through increased mGluR3 activation and thereby reduced glutamate release. In the present review, we summarize the transmitter role of NAAG and discuss the involvement of NAAG in normal brain physiology. We further present the suggested roles of NAAG in various neurological and psychiatric diseases and discuss the therapeutic potential of strategies aiming to enhance NAAG levels.
Collapse
Affiliation(s)
- Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, 1068 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| | - Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| |
Collapse
|
31
|
Receptor mapping using methoxy phenyl piperazine derivative: Preclinical PET imaging. Bioorg Chem 2021; 117:105429. [PMID: 34736134 DOI: 10.1016/j.bioorg.2021.105429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/01/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
This study aimed at assessing 2-methoxyphenyl piperazine derivative for its binding specificity and suitability in mapping metabotropic glutamate receptor subtype 1, which is implicated in several neuropsychiatric disorders. N-(2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl)-N-methylpyridin-2-amine was synthesised and evaluated for brain imaging subsequent to radiolabelling with [11C] radioisotope via methylation process in 98.9% purity and 52 ± 6% yield (decay corrected). The specific activity was in the range of 72-93 GBq/µmol. The haemolysis of blood was 2-5% for initial 4 hr and remained < 10% after 24 h of incubation indicating low toxicity. In vitro autoradiograms after coincubation with unlabelled ligand confirmed the high uptake of the PET radioligand in the mGluR1 receptor rich regions. The PET as well as biodistribution studies also showed high activity in the brain with a direct correlation between receptor abundance distribution pattern and tracer activity. The biodistribution analyses revealed initial high brain uptake (4.18 ± 0.48). The highest uptake was found in cerebellum (SUV 4.7 ± 0.2), followed by thalamus (SUV 3.5 ± 0.1), and striatum (SUV 3 ± 0.1). In contrast, pons had negligible tracer activity. The high uptake observed in all the regions with known mGluR1 activity indicates suitability of the ligand for mGluR1 imaging.
Collapse
|
32
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
33
|
Kryszkowski W, Boczek T. The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment-A Narrative Review. J Clin Med 2021; 10:jcm10071475. [PMID: 33918323 PMCID: PMC8038150 DOI: 10.3390/jcm10071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.
Collapse
Affiliation(s)
- Waldemar Kryszkowski
- General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland;
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland
- Correspondence:
| |
Collapse
|
34
|
Qunies AM, Emmitte KA. Negative allosteric modulators of group II metabotropic glutamate receptors: A patent review (2015 - present). Expert Opin Ther Pat 2021; 31:687-708. [PMID: 33719801 DOI: 10.1080/13543776.2021.1903431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Group II metabotropic glutamate (mGlu) receptors have emerged as an attractive potential target for the development of novel CNS therapeutics in areas such as Alzheimer's disease (AD), anxiety, cognitive disorders, depression, and others. Several small molecules that act as negative allosteric modulators (NAMs) on these receptors have demonstrated efficacy and/or target engagement in animal models, and one molecule (decoglurant) has been advanced into clinical trials. AREAS COVERED This review summarizes patent applications published between January 2015 and November 2020. It is divided into three sections: (1) small molecule nonselective mGlu2/3 NAMs, (2) small molecule selective mGlu2 NAMs, and (3) small molecule selective mGlu3 NAMs. EXPERT OPINION Much progress has been made in the discovery of novel small molecule mGlu2 NAMs. Still, chemical diversity remains somewhat limited and room for expansion remains. Progress with mGlu3 NAMs has been more limited; however, some promising molecules have been disclosed. The process of elucidating the precise role of each receptor in the diseases associated with group II receptors has begun. Continued studies in animals with selective NAMs for both receptors will be critical in the coming years to inform researchers on the right compound profile and patient population for clinical development.
Collapse
Affiliation(s)
- Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
35
|
Chen S, Kadakia F, Davidson S. Group II metabotropic glutamate receptor expressing neurons in anterior cingulate cortex become sensitized after inflammatory and neuropathic pain. Mol Pain 2021; 16:1744806920915339. [PMID: 32326814 PMCID: PMC7227149 DOI: 10.1177/1744806920915339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The anterior cingulate cortex is a limbic region associated with the emotional processing of pain. How neuropathic and inflammatory pain models alter the neurophysiology of specific subsets of neurons in the anterior cingulate cortex remains incompletely understood. Here, we used a GRM2Cre:tdtomato reporter mouse line to identify a population of pyramidal neurons selectively localized to layer II/III of the murine anterior cingulate cortex. GRM2encodes the group II metabotropic glutamate receptor subtype 2 which possesses analgesic properties in mouse and human models, although its function in the anterior cingulate cortex is not known. The majority of GRM2-tdtomato anterior cingulate cortex neurons expressed GRM2gene product in situ but did not overlap with cortical markers of local inhibitory interneurons, parvalbumin or somatostatin. Physiological properties of GRM2-tdtomato anterior cingulate cortex neurons were investigated using whole-cell patch clamp techniques in slice from animals with neuropathic or inflammatory pain, and controls. After hind-paw injection of Complete Freund’s Adjuvant or chronic constriction injury, GRM2-tdtomato anterior cingulate cortex neurons exhibited enhanced excitability as measured by an increase in the number of evoked action potentials and a decreased rheobase. This hyperexcitability was reversed pharmacologically by bath application of the metabotropic glutamate receptor subtype 2 agonist (2R, 4R)-4-Aminopyrrolidine-2,4-dicarboxylate APDC (1 µM) in both inflammatory and neuropathic models. We conclude that layer II/III pyramidal GRM2-tdtomato anterior cingulate cortex neurons express functional group II metabotropic glutamate receptors and undergo changes to membrane biophysical properties under conditions of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Feni Kadakia
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve Davidson
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
36
|
Yuan G, Guehl NJ, Zheng B, Qu X, Moon SH, Dhaynaut M, Shoup TM, Afshar S, Kang HJ, Zhang Z, El Fakhri G, Normandin MD, Brownell AL. Synthesis and Characterization of [ 18F]JNJ-46356479 as the First 18F-Labeled PET Imaging Ligand for Metabotropic Glutamate Receptor 2. Mol Imaging Biol 2021; 23:527-536. [PMID: 33559035 DOI: 10.1007/s11307-021-01586-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Metabotropic glutamate receptor 2 (mGluR2) has been implicated in various psychiatric and neurological disorders, such as schizophrenia and Alzheimer's disease. We have previously developed [11C]7 as a PET radioligand for imaging mGluR2. Herein, [18F]JNJ-46356479 ([18F]8) was synthesized and characterized as the first 18F-labeled mGluR2 imaging ligand to enhance diagnostic approaches for mGluR2-related disorders. PROCEDURES JNJ-46356479 (8) was radiolabeled via the copper (I)-mediated radiofluorination of organoborane 9. In vivo PET imaging experiments with [18F]8 were conducted first in C57BL/6 J mice and Sprague-Dawley rats to obtain whole body biodistribution and brain uptake profile. Subsequent PET studies were done in a cynomolgus monkey (Macaca fascicularis) to investigate the uptake of [18F]8 in the brain, its metabolic stability, as well as pharmacokinetic properties. RESULTS JNJ-46356479 (8) exhibited excellent selectivity against other mGluRs. In vivo PET imaging studies showed reversible and specific binding characteristic of [18F]8 in rodents. In the non-human primate, [18F]8 displayed good in vivo metabolic stability, excellent brain permeability, fast and reversible kinetics with moderate heterogeneity across brain regions. Pre-treatment studies with compound 7 revealed time-dependent decrease of [18F]8 accumulation in mGluR2 rich regions based on SUV values with the highest decrease in the nucleus accumbens (18.7 ± 5.9%) followed by the cerebellum (18.0 ± 7.9%), the parietal cortex (16.9 ± 7.8%), and the hippocampus (16.8 ± 6.9%), similar to results obtained in the rat studies. However, the volume of distribution (VT) results derived from 2T4k model showed enhanced VT from a blocking study with compound 7. This is probably because of the potentiating effect of compound 7 as an mGluR2 PAM as well as related non-specific binding in the tissue data. CONCLUSIONS [18F]8 readily crosses the blood-brain barrier and demonstrates fast and reversible kinetics both in rodents and in a non-human primate. Further investigation of [18F]8 on its binding specificity would warrant translational study in human.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA.
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Baohui Zheng
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Xiying Qu
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Timothy M Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Zhaoda Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA, 02129, USA.
| |
Collapse
|
37
|
Group II Metabotropic Glutamate Receptors Modulate Sound Evoked and Spontaneous Activity in the Mouse Inferior Colliculus. eNeuro 2021; 8:ENEURO.0328-20.2020. [PMID: 33334826 PMCID: PMC7814476 DOI: 10.1523/eneuro.0328-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023] Open
Abstract
Little is known about the functions of Group II metabotropic glutamate receptors (mGluRs2/3) in the inferior colliculus (IC), a midbrain structure that is a major integration region of the central auditory system. We investigated how these receptors modulate sound-evoked and spontaneous firing in the mouse IC in vivo. We first performed immunostaining and tested hearing thresholds to validate vesicular GABA transporter (VGAT)-ChR2 transgenic mice on a mixed CBA/CaJ x C57BL/6J genetic background. Transgenic animals allowed for optogenetic cell-type identification. Extracellular single neuron recordings were obtained before and after pharmacological mGluR2/3 activation. We observed increased sound-evoked firing, as assessed by the rate-level functions (RLFs), in a subset of both GABAergic and non-GABAergic IC neurons following mGluR2/3 pharmacological activation. These neurons also displayed elevated spontaneous excitability and were distributed throughout the IC area tested, suggesting a widespread mGluR2/3 distribution in the mouse IC.
Collapse
|
38
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2021; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
39
|
Gerra MC, Carnevali D, Pedersen IS, Donnini C, Manfredini M, González-Villar A, Triñanes Y, Pidal-Miranda M, Arendt-Nielsen L, Carrillo-de-la-Peña MT. DNA methylation changes in genes involved in inflammation and depression in fibromyalgia: a pilot study. Scand J Pain 2020; 21:372-383. [PMID: 34387961 DOI: 10.1515/sjpain-2020-0124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The present pilot study aims to investigate DNA methylation changes of genes related to fibromyalgia (FM) development and its main comorbid symptoms, including sleep impairment, inflammation, depression and other psychiatric disorders. Epigenetic modifications might trigger or perpetuate complex interplay between pain transduction/transmission, central pain processing and experienced stressors in vulnerable individuals. METHODS We conducted DNA methylation analysis by targeted bisulfite NGS sequencing testing differential methylation in 112 genomic regions from leukocytes of eight women with FM and their eight healthy sisters as controls. RESULTS Tests for differentially methylated regions and cytosines brought focus on the GRM2 gene, encoding the metabotropic glutamate receptor2. The slightly increased DNA methylation observed in the GRM2 region of FM patients may confirm the involvement of the glutamate pathway in this pathological condition. Logistic regression highlighted the simultaneous association of methylation levels of depression and inflammation-related genes with FM. CONCLUSIONS Altogether, the results evidence the glutamate pathway involvement in FM and support the idea that a combination of methylated and unmethylated genes could represent a risk factor to FM or its consequence, more than single genes. Further studies on the identified biomarkers could contribute to unravel the causative underlying FM mechanisms, giving reliable directions to research, improving the diagnosis and effective therapies.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), SMI®, Aalborg University, Aalborg, Denmark
| | - Davide Carnevali
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma (UNIPR), Parma, Italy
| | - Inge Søkilde Pedersen
- Department of Clinical Medicine, Aalborg University Hospital and Aalborg University, Molecular Diagnostics, Aalborg, Denmark
| | - Claudia Donnini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma (UNIPR), Parma, Italy
| | - Matteo Manfredini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma (UNIPR), Parma, Italy
| | - Alberto González-Villar
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Yolanda Triñanes
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marina Pidal-Miranda
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), SMI®, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
40
|
Bonezzi C, Fornasari D, Cricelli C, Magni A, Ventriglia G. Pharmacological Management of Adults with Chronic Non-Cancer Pain in General Practice. Pain Ther 2020; 9:17-28. [PMID: 33315207 PMCID: PMC7736454 DOI: 10.1007/s40122-020-00218-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic pain is a public health priority that affects about 20% of the general population, causing disability and impacting productivity and quality of life. It is often managed in the primary care setting. Chronic pain management is most effective when the pain mechanism has been identified and addressed by appropriate therapy. This document provides an overview of pharmacological therapy for chronic non-cancer pain in the primary care setting, with the aim of improving treatment decisions based on the underlying pain mechanisms and pain neuroscience.
Collapse
Affiliation(s)
- Cesare Bonezzi
- ICS Maugeri IRCCS, Via Salvatore Maugeri 10, Pavia, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, Via Vanvitelli 32, Milan, Italy.
| | - Claudio Cricelli
- SIMG (Italian College of General Practitioners and Primary Care), Via Del Sansovino 179, Florence, Italy
| | - Alberto Magni
- SIMG (Italian College of General Practitioners and Primary Care), Via Del Sansovino 179, Florence, Italy
| | - Giuseppe Ventriglia
- SIMG (Italian College of General Practitioners and Primary Care), Via Del Sansovino 179, Florence, Italy
| |
Collapse
|
41
|
Maldonado C, Vázquez M, Fagiolino P. Potential Therapeutic Role of Carnitine and Acetylcarnitine in Neurological Disorders. Curr Pharm Des 2020; 26:1277-1285. [PMID: 32048954 DOI: 10.2174/1381612826666200212114038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Current therapy of neurological disorders has several limitations. Although a high number of drugs are clinically available, several subjects do not achieve full symptomatic remission. In recent years, there has been an increasing interest in the therapeutic potential of L-carnitine (LCAR) and acetyl-L-carnitine (ALCAR) because of the multiplicity of actions they exert in energy metabolism, as antioxidants, neuromodulators and neuroprotectors. They also show excellent safety and tolerability profile. OBJECTIVE To assess the role of LCAR and ALCAR in neurological disorders. METHODS A meticulous review of the literature was conducted in order to establish the linkage between LCAR and ALCAR and neurological diseases. RESULTS LCAR and ALCAR mechanisms and effects were studied for Alzheimer's disease, depression, neuropathic pain, bipolar disorder, Parkinson's disease and epilepsy in the elderly. Both substances exert their actions mainly on primary metabolism, enhancing energy production, through β-oxidation, and the ammonia elimination via urea cycle promotion. These systemic actions impact positively on the Central Nervous System state, as Ammonia and energy depletion seem to underlie most of the neurotoxic events, such as inflammation, oxidative stress, membrane degeneration, and neurotransmitters disbalances, present in neurological disorders, mainly in the elderly. The impact on bipolar disorder is controversial. LCAR absorption seems to be impaired in the elderly due to the decrease of active transportation; therefore, ALCAR seems to be the more effective option to administer. CONCLUSION ALCAR emerges as a simple, economical and safe adjuvant option in order to impair the progression of most neurological disorders.
Collapse
Affiliation(s)
- Cecilia Maldonado
- Biopharmaceutics and Therapeutics, Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la Republica, Montevideo, Uruguay
| | - Marta Vázquez
- Biopharmaceutics and Therapeutics, Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la Republica, Montevideo, Uruguay
| | - Pietro Fagiolino
- Biopharmaceutics and Therapeutics, Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
42
|
Yuan G, Qu X, Zheng B, Neelamegam R, Afshar S, Iyengar S, Pan C, Wang J, Kang HJ, Ondrechen MJ, Poutiainen P, El Fakhri G, Zhang Z, Brownell AL. Design, Synthesis, and Characterization of Benzimidazole Derivatives as Positron Emission Tomography Imaging Ligands for Metabotropic Glutamate Receptor 2. J Med Chem 2020; 63:12060-12072. [PMID: 32981322 DOI: 10.1021/acs.jmedchem.0c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three benzimidazole derivatives (13-15) have been synthetized as potential positron emission tomography (PET) imaging ligands for mGluR2 in the brain. Of these compounds, 13 exhibits potent binding affinity (IC50 = 7.6 ± 0.9 nM), positive allosteric modulator (PAM) activity (EC50 = 51.2 nM), and excellent selectivity against other mGluR subtypes (>100-fold). [11C]13 was synthesized via O-[11C]methylation of its phenol precursor 25 with [11C]methyl iodide. The achieved radiochemical yield was 20 ± 2% (n = 10, decay-corrected) based on [11C]CO2 with a radiochemical purity of >98% and molar activity of 98 ± 30 GBq/μmol EOS. Ex vivo biodistribution studies revealed reversible accumulation of [11C]13 and hepatobiliary and urinary excretions. PET imaging studies in rats demonstrated that [11C]13 accumulated in the mGluR2-rich brain regions. Pre-administration of mGluR2-selective PAM, 17 reduced the brain uptake of [11C]13, indicating a selective binding. Therefore, [11C]13 is a potential PET imaging ligand for mGluR2 in different central nervous system-related conditions.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Xiying Qu
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Baohui Zheng
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Suhasini Iyengar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Chuzhi Pan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina 27514, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70210, Finland
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Zhaoda Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
43
|
Chidambaram H, Chinnathambi S. G-Protein Coupled Receptors and Tau-different Roles in Alzheimer’s Disease. Neuroscience 2020; 438:198-214. [DOI: 10.1016/j.neuroscience.2020.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/14/2023]
|
44
|
Ferreira CP, Techera Antunes FT, Rebelo IN, da Silva CA, Vilanova FN, Corrêa DS, de Souza AH. Application of the UV–vis spectrophotometry method for the determination of glutamate in the cerebrospinal fluid of rats. J Pharm Biomed Anal 2020; 186:113290. [DOI: 10.1016/j.jpba.2020.113290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
|
45
|
Yuan G, Shoup TM, Moon SH, Brownell AL. A concise method for fully automated radiosyntheses of [ 18F]JNJ-46356479 and [ 18F]FITM via Cu-mediated 18F-fluorination of organoboranes. RSC Adv 2020; 10:25223-25227. [PMID: 33014351 PMCID: PMC7497470 DOI: 10.1039/d0ra04943c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
A modified alcohol-enhanced 18F-fluorodeboronation has been developed for the radiosyntheses of [18F]JNJ-46356479 and [18F]FITM. Unlike the [18F]KF/K222 approach, this method tolerates the presence of sensitive heterocycles in Bpin precursors 4 and 8 allowing a one-step 18F-fluorodeboronation on the fully automated TRACERlab™ FXFN platform. A modified alcohol-enhanced 18F-fluorodeboronation has been developed for the radiosyntheses of [18F]JNJ-46356479 and [18F]FITM.![]()
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA 02129, USA. ;
| | - Timothy M Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA 02129, USA. ;
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA 02129, USA. ;
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, MA 02129, USA. ;
| |
Collapse
|
46
|
Mazzitelli M, Neugebauer V. Amygdala group II mGluRs mediate the inhibitory effects of systemic group II mGluR activation on behavior and spinal neurons in a rat model of arthritis pain. Neuropharmacology 2019; 158:107706. [PMID: 31306647 DOI: 10.1016/j.neuropharm.2019.107706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
The amygdala plays a critical role in emotional-affective aspects of behaviors and pain modulation. The central nucleus of amygdala (CeA) serves major output functions, and neuroplasticity in the CeA is linked to pain-related behaviors in different models. Activation of Gi/o-coupled group II metabotropic glutamate receptors (mGluRs), which consist of mGluR2 and mGluR3, can decrease neurotransmitter release and regulate synaptic plasticity. Group II mGluRs have emerged as targets for neuropsychiatric disorders and can inhibit pain-related processing and behaviors. Surprisingly, site and mechanism of antinociceptive actions of systemically applied group II mGluR agonists are not clear. Our previous work showed that group II mGluR activation in the amygdala inhibits pain-related CeA activity, but behavioral and spinal consequences remain to be determined. Here we studied the contribution of group II mGluRs in the amygdala to the antinociceptive effects of a systemically applied group II mGluR agonist (LY379268) on behavior and spinal dorsal horn neuronal activity, using the kaolin/carrageenan-induced knee joint arthritis pain model. Audible and ultrasonic vocalizations (emotional responses) and mechanical reflex thresholds were measured in adult rats with and without arthritis (5-6 h postinduction). Extracellular single-unit recordings were made from spinal dorsal horn wide dynamic range neurons of anesthetized (isoflurane) rats with and without arthritis (5-6 h postinduction). Systemic (intraperitoneal) application of a group II mGluR agonist (LY379268) decreased behaviors and activity of spinal neurons in the arthritis pain model but not under normal conditions. Stereotaxic administration of LY379268 into the CeA mimicked the effects of systemic application. Conversely, stereotaxic administration of a group II mGluR antagonist (LY341495) into the CeA reversed the effects of systemic application of LY379268 on behaviors and dorsal horn neuronal activity in arthritic rats. The data show for the first time that the amygdala is the critical site of action for the antinociceptive behavioral and spinal neuronal effects of systemically applied group II mGluR agonists.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6592, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6592, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6592, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6592, USA.
| |
Collapse
|
47
|
Tarsal Tunnel Mechanosensitivity Is Increased in Patients with Asthma: A Case-Control Study. J Clin Med 2018; 7:jcm7120541. [PMID: 30545067 PMCID: PMC6306873 DOI: 10.3390/jcm7120541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Based on changes in lung function and musculoskeletal disorders in patients with asthma, this study aimed to compare the tarsal tunnel and fibular bone pressure pain thresholds (PPTs) of patients with asthma and healthy matched-paired controls. Methods: A case-control study was performed. One hundred participants were recruited: 50 asthma patients and 50 healthy matched-paired controls. Bilaterally, tarsal tunnel and fibula bone PPTs were registered. Results: Statistically significant differences (p < 0.01) were shown bilaterally for tarsal tunnel PPT. With the exception of fibula PPT (p > 0.05), asthma patients presented less tarsal tunnel PPT than healthy participants. Statistically significant differences (p < 0.05) were shown for two linear regression prediction models of the right (R2 = 0.279) and left (R2 = 0.249) tarsal tunnels PPTs as dependent variables, and based on sex, group, contralateral tarsal tunnel PPT and ipsilateral fibula PPT as independent variables. Conclusions: The study findings showed that a bilateral tarsal tunnel mechanosensitivity increase is exhibited in patients diagnosed with asthma. The presence of asthma may bilaterally predict the PPT of tarsal tunnel. These findings may suggest the presence of central sensitization in asthma patients, which could clinically predispose them to musculoskeletal disorders, such as tarsal tunnel syndrome.
Collapse
|