1
|
Andressa Caetano R, Alves J, Smaniotto TA, Daroda Dutra F, de Assis EZB, Soares Pedroso L, Peres A, Machado AG, Krolow R, Maciel August P, Matté C, Seady M, Leite MC, Machado BG, Marques C, Saraiva L, de Lima RMS, Dalmaz C. Impacts of linseed oil diet on anxiety and memory extinction after early life stress: A sex-specific analysis of mitochondrial dysfunction, astrocytic markers, and inflammation in the amygdala. Brain Res 2024; 1846:149268. [PMID: 39374840 DOI: 10.1016/j.brainres.2024.149268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Early exposure to stressors affects how the organism reacts to stimuli, its emotional state throughout life, and how it deals with emotional memories. Consequently, it may affect susceptibility to psychopathology later in life. We used an animal model of early stress by maternal separation to study its potential impact on the extinction of aversive memories and anxiety-like behavior in adulthood, as well as its effects on mitochondrial functionality, inflammatory and astrocytic markers in the amygdala. We also assessed whether a diet enriched with linseed oil, known for its high content in omega-3 fats, could be used to attenuate the behavioral and neurochemical effects of early stress. Litters of Wistar rats were divided into controls (intact) or subjected to maternal separation (MS). They were subdivided into two groups receiving isocaloric diets enriched in soy or linseed oils at weaning. In adulthood, the animals were exposed to the open field and the elevated plus maze, to evaluate exploratory activity and anxiety-like behavior. They were also trained in a context of fear conditioning, and afterward subjected to an extinction session, followed by a test session to evaluate the extinction memory. Amygdalae were evaluated for inflammatory cytokines (interleukin (IL)-1beta, IL-6, and tumor-necrose factor (TNF)-alpha), mitochondrial functionality, and astrocyte markers (glial fibrillary acidic protein - GFAP, S100B, and glutamine synthetase activity). MS induced anxiety-like behavior in the elevated plus-maze, which was reversed by a diet enriched in linseed oil offered from weaning. When testing the memory of an extinction session of fear conditioning, MS animals showed more freezing behavior. MS males receiving a linseed oil-enriched diet had lower functional mitochondria in the amygdala. In addition, MS led to increased inflammatory cytokines, particularly IL-1beta, and the diet enriched in linseed oil further increased these levels in MS animals. MS also increased S100B levels. These results point to a higher emotionality presented by MS animals, with higher levels of inflammatory cytokines and S100B. While a diet enriched in linseed oil attenuated anxiety-like behavior, it further altered amygdala IL-1beta and reduced mitochondria functionality, particularly in males. MS also increased glutamine synthetase activity in the amygdala, and this effect was higher when the animals received a diet enriched in linseed oil, particularly in females. In conclusion, these results point to MS effects on emotional behavior, and neurochemical alterations in the amygdala, with sex-specific effects. Although a diet enriched in linseed oil appears to be able to reverse some of MS behavioral effects, these results must be considered with caution, since biochemical parameters could be worsened in MS animals receiving a linseed oil-enriched diet. This knowledge is important for the understanding of mechanisms of action of strategies aiming to reverse early stress effects, and future studies are warranted to determine possible interventions to promote resilience.
Collapse
Affiliation(s)
- Regina Andressa Caetano
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil
| | - Joelma Alves
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Thiago A Smaniotto
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Francisco Daroda Dutra
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil
| | - Eduardo Z B de Assis
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Luisa Soares Pedroso
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Ariadni Peres
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Alessandra G Machado
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Rachel Krolow
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Pauline Maciel August
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Marina Seady
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil
| | - Marina C Leite
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Brenda G Machado
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carolina Marques
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Laura Saraiva
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | - Randriely Merscher Sobreira de Lima
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Soares LA, Nascimento LMM, Guimarães FS, Gazarini L, Bertoglio LJ. Dual-step pharmacological intervention for traumatic-like memories: implications from D-cycloserine and cannabidiol or clonidine in male and female rats. Psychopharmacology (Berl) 2024; 241:1827-1840. [PMID: 38691149 DOI: 10.1007/s00213-024-06596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
RATIONALE Therapeutic approaches to mitigating traumatic memories have often faced resistance. Exploring safe reconsolidation blockers, drugs capable of reducing the emotional valence of the memory upon brief retrieval and reactivation, emerges as a promising pharmacological strategy. Towards this objective, preclinical investigations should focus on aversive memories resulting in maladaptive outcomes and consider sex-related differences to enhance their translatability. OBJECTIVES After selecting a relatively high training magnitude leading to the formation of a more intense and generalized fear memory in adult female and male rats, we investigated whether two clinically approved drugs disrupting its reconsolidation remain effective. RESULTS We found resistant reconsolidation impairment by the α2-adrenergic receptor agonist clonidine or cannabidiol, a major non-psychotomimetic Cannabis sativa component. However, pre-retrieval administration of D-cycloserine, a partial agonist at the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptor complex, facilitated their impairing effects on reconsolidation. A similar reconsolidation blockade by clonidine or cannabidiol was achieved following exposure to a non-conditioned but generalized context after D-cycloserine administration. This suggests that sufficient memory destabilization can accompany generalized fear expression. Combining clonidine with cannabidiol without potentiating memory destabilization by D-cycloserine was ineffective. CONCLUSIONS These findings highlight the importance of NMDA receptor signaling in memory destabilization and underscore the efficacy of a dual-step pharmacological intervention in attenuating traumatic-like memories, even in a context different from the original learning environment.
Collapse
Affiliation(s)
- Luciane A Soares
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Laura M M Nascimento
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Lucas Gazarini
- Universidade Federal de Mato Grosso Do Sul, Três Lagoas, MS, Brazil
| | - Leandro J Bertoglio
- Universidade Federal de Mato Grosso Do Sul, Três Lagoas, MS, Brazil.
- Depto. de Farmacologia, CCB, UFSC, Campus Universitário S/N, Florianópolis, SC, 88049-900, Brazil.
| |
Collapse
|
3
|
Alves J, Dos Santos APB, Vieira ADS, Martini APR, de Lima RMS, Smaniotto TÂ, de Moraes RO, Gomes RF, Acerbi GCDA, de Assis EZB, Lampert C, Dalmaz C, Couto Pereira NDS. Coping with the experience of frustration throughout life: Sex- and age-specific effects of early life stress on the susceptibility to reward devaluation. Neuroscience 2024; 553:160-171. [PMID: 38960089 DOI: 10.1016/j.neuroscience.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Early life stress may lead to lifelong impairments in psychophysiological functions, including emotional and reward systems. Unpredicted decrease in reward magnitude generates a negative emotional state (frustration) that may be involved with susceptibility to psychiatric disorders. We evaluated, in adolescents and adult rats of both sexes, whether maternal separation (MS) alters the ability to cope with an unexpected reduction of reward later in life. Litters of Wistar rats were divided into controls (non handled - NH) or subjected to MS. Animals were trained to find sugary cereal pellets; later the amount was reduced. Increased latency to reach the reward-associated area indicates higher inability to regulate frustration. The dorsal hippocampus (dHC) and basolateral amygdala (BLA) were evaluated for protein levels of NMDA receptor subunits (GluN2A/GluN2B), synaptophysin, PSD95, SNAP-25 and CRF1. We found that adult MS males had greater vulnerability to reward reduction, together with decreased GluN2A and increased GluN2B immunocontent in the dHC. MS females and adolescents did not differ from controls. We concluded that MS enhances the response to frustration in adult males. The change in the ratio of GluN2A and GluN2B subunits in dHC could be related to a stronger, more difficult to update memory of the aversive experience.
Collapse
Affiliation(s)
- Joelma Alves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Bosquetti Dos Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Dos Santos Vieira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Rodrigues Martini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Randriely Merscher Sobreira de Lima
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Thiago Ângelo Smaniotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Oliveira de Moraes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Roger Ferreira Gomes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Giulia Conde de Albite Acerbi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Eduardo Z B de Assis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carine Lampert
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carla Dalmaz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Natividade de Sá Couto Pereira
- Psychological Neuroscience Laboratory, Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal.
| |
Collapse
|
4
|
Bonanno GR, Met Hoxha E, Robinson PK, Ferrara NC, Trask S. Fear Reduced Through Unconditional Stimulus Deflation Is Behaviorally Distinct From Extinction and Differentially Engages the Amygdala. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:756-765. [PMID: 37881558 PMCID: PMC10593882 DOI: 10.1016/j.bpsgos.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Background Context fear memory can be reliably reduced by subsequent pairings of that context with a weaker shock. This procedure shares similarities with extinction learning: both involve extended time in the conditioning chamber following training and reduce context-elicited fear. Unlike extinction, this weak-shock exposure has been hypothesized to engage reconsolidation-like processes that weaken the original memory. Methods We directly compared the weak-shock procedure with extinction using male and female Long Evans rats. Results Both repeated weak-shock exposure and extinction resulted in decreased context freezing relative to animals that received context fear conditioning but no subsequent context exposure. Conditioning with the weak shock was not enough to form a persistent context-shock association on its own, suggesting that the weak-shock procedure does not create a new memory. Weak-shock exposure in a new context can still reduce freezing elicited by the training context, suggesting that it reduces responding through a different process than extinction, which does not transcend context. Finally, reduced fear behavior produced through both extinction and weak-shock exposure was mirrored by reduced zif268 expression in the basolateral amygdala. However, only the weak-shock procedure resulted in changes in lysine-48 polyubiquitin tagging in the synapse of the basolateral amygdala, suggesting that this procedure produced long-lasting changes in synaptic function within the basolateral amygdala. Conclusions These results suggest that the weak-shock procedure does not rely on the creation of a new inhibitory memory, as in extinction, and instead may alter the original representation of the shock to reduce fear responding.
Collapse
Affiliation(s)
| | - Erisa Met Hoxha
- Purdue University Department of Psychological Sciences, West Lafayette, Indiana
| | - Payton K. Robinson
- Purdue University Department of Psychological Sciences, West Lafayette, Indiana
| | - Nicole C. Ferrara
- Purdue University Department of Psychological Sciences, West Lafayette, Indiana
- Rosalind Franklin University of Medicine and Science Discipline of Physiology and Biophysics, North Chicago, Illinois
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, North Chicago, Illinois
| | - Sydney Trask
- Purdue University Department of Psychological Sciences, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana
| |
Collapse
|
5
|
Valencia-Florez KB, Sánchez-Castillo H, Vázquez P, Zarate P, Paz DB. Stress, a Brief Update. Int J Psychol Res (Medellin) 2023; 16:105-121. [PMID: 38106958 PMCID: PMC10723744 DOI: 10.21500/20112084.5815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 06/06/2023] [Indexed: 12/19/2023] Open
Abstract
Stress is fundamental for health and adaptation; it is an evolutionarily conserved response that involves several systems in the organism. The study of the stress response could be traced back to the end of the nineteenth century with George Beard's or Claude Bernard's work and, from that moment on, several studies that have allowed the elucidation of its neurobiology and the consequences of suffering from it were consolidated. In this theoretical review, we discuss the most relevant researches to our knowledge on the study of stress response, from the concept of stress, its neurobiology, the hormonal response during stress, as well as its regulation, the effects of acute and chronic stress, stress from cognition, the different stress responses during life, as well as its relationship with different psychiatric disorders. Taken together, the reviewed research updates the classic perspective on stress, increasing the factors that should be considered in research to explore the effects of stress on health.
Collapse
Affiliation(s)
- Kenji Baruch Valencia-Florez
- Neuropsychopharmacology Lab. Psychobiology and Neurosciences Department. Psychology School National University of Mexico (UNAM)., MéxicoUniversidad Nacional Autónoma de MéxicoUniversity of MexicoMexico
| | - Hugo Sánchez-Castillo
- Neuropsychopharmacology Lab. Psychobiology and Neurosciences Department. Psychology School National University of Mexico (UNAM)., MéxicoUniversidad Nacional Autónoma de MéxicoUniversity of MexicoMexico
| | - Priscila Vázquez
- Neuropsychopharmacology Lab. Psychobiology and Neurosciences Department. Psychology School National University of Mexico (UNAM)., MéxicoUniversidad Nacional Autónoma de MéxicoUniversity of MexicoMexico
| | - Pavel Zarate
- Ibeoramerican Society of Applied Neurosciences (SINA) , México.Ibeoramerican Society of Applied NeurosciencesMéxico
| | - Diana Berenice Paz
- Neuropsychopharmacology Lab. Psychobiology and Neurosciences Department. Sistema de Universidad Abierta y a Distancia (SUAyD), Psychology School, National University of Mexico (UNAM) , México.Universidad Nacional Autónoma de MéxicoNational University of MexicoMexico
| |
Collapse
|
6
|
de Lima RMS, Couto Pereira NDS, Dalmaz C, Mar Arcego D. Editorial: Early life events: shedding light on neurobiological mechanisms. Front Behav Neurosci 2023; 17:1209494. [PMID: 37266160 PMCID: PMC10231680 DOI: 10.3389/fnbeh.2023.1209494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Randriely Merscher Sobreira de Lima
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Natividade de Sá Couto Pereira
- Psychological Neuroscience Laboratory, Psychology Research Centre, School of Psychology, University of Minho, Braga, Portugal
| | - Carla Dalmaz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danusa Mar Arcego
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Silva BA, Gräff J. Face your fears: attenuating remote fear memories by reconsolidation-updating. Trends Cogn Sci 2023; 27:404-416. [PMID: 36813591 DOI: 10.1016/j.tics.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
Traumatic events generate some of the most enduring memories, yet little is known about how long-lasting fear memories can be attenuated. In this review, we collect the surprisingly sparse evidence on remote fear memory attenuation from both animal and human research. What is becoming apparent is twofold: although remote fear memories are more resistant to change compared with recent ones, they can nevertheless be attenuated when interventions are targeted toward the period of memory malleability instigated by memory recall, the reconsolidation window. We describe the physiological mechanisms underlying remote reconsolidation-updating approaches and highlight how they can be enhanced through interventions promoting synaptic plasticity. By capitalizing on an intrinsically relevant phase of memory, reconsolidation-updating harbors the potential to permanently alter remote fear memories.
Collapse
Affiliation(s)
- Bianca A Silva
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Switzerland.
| |
Collapse
|
8
|
Hashimoto JG, Singer ML, Goeke CM, Zhang F, Song Y, Xia K, Linhardt RJ, Guizzetti M. Sex differences in hippocampal structural plasticity and glycosaminoglycan disaccharide levels after neonatal handling. Exp Neurol 2023; 361:114313. [PMID: 36572372 PMCID: PMC10097408 DOI: 10.1016/j.expneurol.2022.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
In this study we investigated the effects of a neonatal handling protocol that mimics the handling of sham control pups in protocols of neonatal exposure to brain insults on dendritic arborization and glycosaminoglycan (GAG) levels in the developing brain. GAGs are long, unbranched polysaccharides, consisting of repeating disaccharide units that can be modified by sulfation at specific sites and are involved in modulating neuronal plasticity during brain development. In this study, male and female Sprague-Dawley rats underwent neonatal handling daily between post-natal day (PD)4 and PD9, with brains analyzed on PD9. Neuronal morphology and morphometric analysis of the apical and basal dendritic trees of CA1 hippocampal pyramidal neurons were carried out by Golgi-Cox staining followed by neuron tracing and analysis with the software Neurolucida. Chondroitin sulfate (CS)-, Hyaluronic Acid (HA)-, and Heparan Sulfate (HS)-GAG disaccharide levels were quantified in the hippocampus by Liquid Chromatography/Mass Spectrometry analyses. We found sex by neonatal handling interactions on several parameters of CA1 pyramidal neuron morphology and in the levels of HS-GAGs, with females, but not males, showing an increase in both dendritic arborization and HS-GAG levels. We also observed increased expression of glucocorticoid receptor gene Nr3c1 in the hippocampus of both males and females following neonatal handling suggesting that both sexes experienced a similar stress during the handling procedure. This is the first study to show sex differences in two parameters of brain plasticity, CA1 neuron morphology and HS-GAG levels, following handling stress in neonatal rats.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Mo L Singer
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Calla M Goeke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - Fuming Zhang
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuefan Song
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Chemistry and Chemical Biology, Biomedical Engineering, Chemical and Biological Engineering, and Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
9
|
Couto Pereira NDS, Klippel Zanona Q, Pastore Bernardi M, Alves J, Dalmaz C, Calcagnotto ME. Aversive memory reactivation: A possible role for delta oscillations in the hippocampus-amygdala circuit. J Neurosci Res 2023; 101:48-69. [PMID: 36128957 DOI: 10.1002/jnr.25127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 02/03/2023]
Abstract
Memory labilization, the process by which memories become susceptible to update, is essential for memory reconsolidation and has been a target for novel therapies for traumatic memory-associated disorders. Maternal separation (MS) in male rats produced memories resistant to labilization in adulthood. Based on previous results, we hypothesized that temporal desynchronization between the dorsal hippocampus (DHc) and the basolateral amygdala (BLA), during memory retrieval, could be responsible for this impairment. Our goal was to investigate possible differences in oscillatory activity and synchrony between the DHc and BLA during fear memory reactivation, between MS and non-handled (NH) rats. We used male adult Wistar rats, NH or MS, with electrodes for local field potential (LFP) recordings implanted in the DHc and BLA. Animals were submitted to aversive memory reactivation by exposure to the conditioned context (Reat) or to pseudo-reactivation in a neutral context (pReat), and LFP was recorded. Plasticity markers linked to reconsolidation were evaluated one hour after reactivation. The power of delta oscillations and DHc-BLA synchrony in Reat animals was increased, during freezing. Besides, delta modulation of gamma oscillations amplitude in the BLA was associated with the increase in DHc Zif268 levels, an immediate early gene specifically associated with reconsolidation. Concerning early life stress, we found lower power of delta and strength of delta-gamma oscillations coupling in MS rats, compared to NH, which could explain the low Zif268 levels in a subgroup of MS animals. These results suggest a role for delta oscillations in memory reactivation that should be further investigated.
Collapse
Affiliation(s)
- Natividade de Sá Couto Pereira
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Querusche Klippel Zanona
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Pastore Bernardi
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joelma Alves
- Neurobiology of Stress Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Neurobiology of Stress Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Franzen JM, Vanz F, Werle I, Guimarães FS, Bertoglio LJ. Cannabidiol impairs fear memory reconsolidation in female rats through dorsal hippocampus CB1 but not CB2 receptor interaction. Eur Neuropsychopharmacol 2022; 64:7-18. [PMID: 36049316 DOI: 10.1016/j.euroneuro.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 01/23/2023]
Abstract
Women present increased susceptibility to anxiety- and stress-related disorders compared to men. A potentially promising pharmacological-based strategy to regulate abnormal aversive memories disrupts their reconsolidation stage after reactivation and destabilization. Male rodent findings indicate that cannabidiol (CBD), a relatively safe and effective treatment for several mental health conditions, can impair the reconsolidation of aversive memories. However, whether and how CBD influences it in females is still unknown. The present study addressed this question in contextually fear-conditioned female rats. We report that systemically administered CBD impaired their reconsolidation, reducing freezing expression for over a week. This action was restricted to a time when the reconsolidation presumably lasted (< six hours post-retrieval) and depended on memory reactivation/destabilization. Moreover, the impairing effects of CBD on memory reconsolidation relied on the activation of cannabinoid type-1 but not type-2 receptors located in the CA1 subregion of the dorsal hippocampus. CBD applied directly to this brain area was sufficient to reproduce the effects of systemic CBD treatment. Contextual fear memories attenuated by CBD did not show reinstatement, an extinction-related feature. By demonstrating that destabilized fear memories are sensitive to CBD and how it hinders mechanisms in the DH CA1 that may restabilize them in female rats, the present findings concur that reconsolidation blockers are viable and could be effective in disrupting abnormally persistent and distressing aversive memories such as those related to posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jaqueline M Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Vanz
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Isabel Werle
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Cox WR, Faliagkas L, Besseling A, van der Loo RJ, Spijker S, Kindt M, Rao-Ruiz P. Interfering With Contextual Fear Memories by Post-reactivation Administration of Propranolol in Mice: A Series of Null Findings. Front Behav Neurosci 2022; 16:893572. [PMID: 35832291 PMCID: PMC9272000 DOI: 10.3389/fnbeh.2022.893572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Post-reactivation amnesia of contextual fear memories by blockade of noradrenergic signaling has been shown to have limited replicability in rodents. This is usually attributed to several boundary conditions that gate the destabilization of memory during its retrieval. How these boundary conditions can be overcome, and what neural mechanisms underlie post-reactivation changes in contextual fear memories remain largely unknown. Here, we report a series of experiments in a contextual fear-conditioning paradigm in mice, that were aimed at solving these issues. We first attempted to obtain a training paradigm that would consistently result in contextual fear memory that could be destabilized upon reactivation, enabling post-retrieval amnesia by the administration of propranolol. Unexpectedly, our attempts were unsuccessful to this end. Specifically, over a series of experiments in which we varied different parameters of the fear acquisition procedure, at best small and inconsistent effects were observed. Additionally, we found that propranolol did not alter retrieval-induced neural activity, as measured by the number of c-Fos+ cells in the hippocampal dentate gyrus. To determine whether propranolol was perhaps ineffective in interfering with reactivated contextual fear memories, we also included anisomycin (i.e., a potent and well-known amnesic drug) in several experiments, and measures of synaptic glutamate receptor subunit GluA2 (i.e., a marker of memory destabilization). No post-retrieval amnesia by anisomycin and no altered GluA2 expression by reactivation was observed, suggesting that the memories did not undergo destabilization. The null findings are surprising, given that the training paradigms we implemented were previously shown to result in memories that could be modified upon reactivation. Together, our observations illustrate the elusive nature of reactivation-dependent changes in non-human fear memory.
Collapse
Affiliation(s)
- Wouter R. Cox
- Department of Psychology, Clinical Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Leonidas Faliagkas
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Amber Besseling
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rolinka J. van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Merel Kindt
- Department of Psychology, Clinical Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Priyanka Rao-Ruiz
| |
Collapse
|
12
|
Effects of early life adversities upon memory processes and cognition in rodent models. Neuroscience 2022; 497:282-307. [PMID: 35525496 DOI: 10.1016/j.neuroscience.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Exposure to stressors in early postnatal life induces long-lasting modifications in brainfunction.Thisplasticity,an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on thehypothalamic-pituitary-adrenal axisresponse to stressors, and has been reported to lead toneuroinflammation,altered levelsof neurotrophic factors, modifications inneurogenesis andsynaptic plasticity,with changes in neurotransmitter systems and network functioning. In this review, we focus on early postnatal stress in animal models and their effects on learning and memory.Many studies have reported ELS-induced impairments in different types of memories, including spatial memory, fear memory, recognition (both for objects and social) memory, working memory and reversal learning. Studies are not always in agreement, however, no effects, or sometimes facilitation, being reported, depending on the nature and intensity of the early intervention, as well as the age when the outcome was evaluated and the sex of the animals. When considering processes occurring after consolidation, related with memory maintenance or modification, there are a very reduced number of reports. Future studies addressing the mechanisms underlying memory changes for ELS should shed some light on the understanding of the different effects induced by stressors of different types and intensities on cognitive functions.
Collapse
|
13
|
Chelini G, Pangrazzi L, Bozzi Y. At the Crossroad Between Resiliency and Fragility: A Neurodevelopmental Perspective on Early-Life Experiences. Front Cell Neurosci 2022; 16:863866. [PMID: 35465609 PMCID: PMC9023311 DOI: 10.3389/fncel.2022.863866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal development of the brain is characterized by sensitive windows during which, local circuitry are drastically reshaped by life experiences. These critical periods (CPs) occur at different time points for different brain functions, presenting redundant physiological changes in the underlying brain regions. Although circuits malleability during CPs provides a valuable window of opportunity for adaptive fine-tuning to the living environment, this aspect of neurodevelopment also represents a phase of increased vulnerability for the development of a variety of disorders. Consistently, accumulating epidemiological studies point to adverse childhood experience as a major risk factor for many medical conditions, especially stress- and anxiety-related conditions. Thanks to creative approaches to manipulate rodents’ rearing environment, neurobiologist have uncovered a pivotal interaction between CPs and early-life experiences, offering an interesting landscape to improve our understanding of brain disorders. In this short review, we discuss how early-life experience impacts cellular and molecular players involved in CPs of development, translating into long-lasting behavioral consequences in rodents. Bringing together findings from multiple laboratories, we delineate a unifying theory in which systemic factors dynamically target the maturation of brain functions based on adaptive needs, shifting the balance between resilience and vulnerability in response to the quality of the rearing environment.
Collapse
Affiliation(s)
- Gabriele Chelini
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Gabriele Chelini,
| | - Luca Pangrazzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Bozzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Consiglio Nazionale delle Ricerche (CNR) Neuroscience Institute, Pisa, Italy
| |
Collapse
|
14
|
Dai ZH, Xu X, Chen WQ, Nie LN, Liu Y, Sui N, Liang J. The role of hippocampus in memory reactivation: an implication for a therapeutic target against opioid use disorder. CURRENT ADDICTION REPORTS 2022; 9:67-79. [PMID: 35223369 PMCID: PMC8857535 DOI: 10.1007/s40429-022-00407-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
Purpose of the review The abuse of opioids induces many terrible problems in human health and social stability. For opioid-dependent individuals, withdrawal memory can be reactivated by context, which is then associated with extremely unpleasant physical and emotional feelings during opioid withdrawal. The reactivation of withdrawal memory is considered one of the most important reasons for opioid relapse, and it also allows for memory modulation based on the reconsolidation phenomenon. However, studies exploring withdrawal memory modulation during the reconsolidation window are lacking. By summarizing the previous findings about the reactivation of negative emotional memories, we are going to suggest potential neural regions and systems for modulating opioid withdrawal memory. Recent findings Here, we first present the role of memory reactivation in its modification, discuss how the hippocampus participates in memory reactivation, and discuss the importance of noradrenergic signaling in the hippocampus for memory reactivation. Then, we review the engagement of other limbic regions receiving noradrenergic signaling in memory reactivation. We suggest that noradrenergic signaling targeting hippocampus neurons might play a potential role in strengthening the disruptive effect of withdrawal memory extinction by facilitating the degree of memory reactivation. Summary This review will contribute to a better understanding of the mechanisms underlying reactivation-dependent memory malleability and will provide new therapeutic avenues for treating opioid use disorders.
Collapse
Affiliation(s)
- Zhong-hua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-qi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Li-na Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Deficits in hippocampal-dependent memory across different rodent models of early life stress: systematic review and meta-analysis. Transl Psychiatry 2021; 11:231. [PMID: 33879774 PMCID: PMC8058062 DOI: 10.1038/s41398-021-01352-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to early life stress (ELS) causes abnormal hippocampal development and functional deficits in rodents and humans, but no meta-analysis has been used yet to quantify the effects of different rodent models of ELS on hippocampal-dependent memory. We searched PubMed and Web of Science for publications that assessed the effects of handling, maternal separation (MS), and limited bedding and nesting (LBN) on performance in the Morris water maze (MWM), novel object recognition (NOR), and contextual fear conditioning (CFC). Forty-five studies met inclusion criteria (n = 451-763 rodents per test) and were used to calculate standardized mean differences (Hedge's g) and to assess heterogeneity, publication bias, and the moderating effects of sex and species (rats vs. mice). We found significantly lower heterogeneity in LBN compared to handling and MS with no consistent effects of sex or species across the three paradigms. LBN and MS caused similar cognitive deficits in tasks that rely heavily on the dorsal hippocampus, such as MWM and NOR, and were significantly different compared to the improved performance seen in rodents exposed to handling. In the CFC task, which relies more on the ventral hippocampus, all three paradigms showed reduced freezing with moderate effect sizes that were not statistically different. These findings demonstrate the utility of using meta-analysis to quantify outcomes in a large number of inconsistent preclinical studies and highlight the need to further investigate the possibility that handling causes different alterations in the dorsal hippocampus but similar outcomes in the ventral hippocampus when compared to MS and LBN.
Collapse
|
16
|
Life-course effects of early life adversity exposure on eating behavior and metabolism. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:237-273. [PMID: 34311901 DOI: 10.1016/bs.afnr.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Environmental variations in early life influence brain development, making individuals more vulnerable to psychiatric and metabolic disorders. Early life stress (ELS) has a strong impact on the development of eating behavior. However, eating is a complex behavior, determined by an interaction between signals of energy homeostasis, neuronal circuits involved in its regulation, and circuits related to rewarding properties of the food. Although mechanisms underlying ELS-induced altered feeding behavior are not completely understood, evidence suggest that the effects of ELS on metabolic, mood, and emotional disorders, as well as reward system dysfunctions can contribute directly or indirectly to altered feeding behavior. The focus of this chapter is to discuss the effects of ELS on eating behavior and metabolism, considering different factors that control appetite such as energy homeostasis, hedonic properties of the food, emotional and cognitive status. After highlighting classic studies on the association between ELS and eating behavior alterations, we discuss how exposure to adversity can interact with genetics characteristics to predict variable outcomes.
Collapse
|
17
|
Reactivation-Dependent Amnesia for Contextual Fear Memories: Evidence for Publication Bias. eNeuro 2021; 8:ENEURO.0108-20.2020. [PMID: 33355289 PMCID: PMC7877470 DOI: 10.1523/eneuro.0108-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Research on memory reconsolidation has been booming in the last two decades, with numerous high-impact publications reporting promising amnestic interventions in rodents and humans. However, our own recently-published failed replication attempts of reactivation-dependent amnesia for fear memories in rats suggest that such amnestic effects are not always readily found and that they depend on subtle and possibly uncontrollable parameters. The discrepancy between our observations and published studies in rodents suggests that the literature in this field might be biased. The aim of the current study was to gauge the presence of publication bias in a well-delineated part of the reconsolidation literature. To this end, we performed a systematic review of the literature on reactivation-dependent amnesia for contextual fear memories in rodents, followed by a statistical assessment of publication bias in this sample. In addition, relevant researchers were contacted for unpublished results, which were included in the current analyses. The obtained results support the presence of publication bias, suggesting that the literature provides an overly optimistic overall estimate of the size and reproducibility of amnestic effects. Reactivation-dependent amnesia for contextual fear memories in rodents is thus less robust than what is projected by the literature. The moderate success of clinical studies may be in line with this conclusion, rather than reflecting translational issues. For the field to evolve, replication and non-biased publication of obtained results are essential. A set of tools that can create opportunities to increase transparency, reproducibility and credibility of research findings is provided.
Collapse
|
18
|
Troyner F, Bertoglio LJ. Nucleus reuniens of the thalamus controls fear memory reconsolidation. Neurobiol Learn Mem 2020; 177:107343. [PMID: 33242589 DOI: 10.1016/j.nlm.2020.107343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
The nucleus reuniens has been shown to support the acquisition, consolidation, maintenance, destabilization upon retrieval, and extinction of aversive memories. However, the direct participation of this thalamic subregion in memory reconsolidation is yet to be examined. The present study addressed this question in contextually fear-conditioned rats. Post-reactivation infusion of the GABAA receptor agonist muscimol, the glutamate N2A-containing NMDA receptor antagonist TCN-201, or the protein synthesis inhibitor anisomycin into the NR induced significant impairments in memory reconsolidation. Administering muscimol or TCN-201 and anisomycin locally, or associating locally infused muscimol or TCN-201 with systemically administered clonidine, an α2-receptor adrenergic agonist that attenuates the noradrenergic tonus associated with memory reconsolidation, produced no further reduction in freezing times when compared with the muscimol-vehicle, TCN-201-vehicle, vehicle-anisomycin, and vehicle-clonidine groups. This pattern of results indicates that such treatment combinations produced no additive/synergistic effects on reconsolidation. It is plausible that NR inactivation and antagonism of glutamate N2A-containing NMDA receptors weakened/prevented the subsequent action of anisomycin and clonidine because they disrupted the early stages of signal transduction pathways involved in memory reconsolidation. It is noteworthy that these pharmacological interventions, either alone or combined, induced no contextual memory specificity changes, as assessed in a later test in a novel and unpaired context. Besides, omitting memory reactivation precluded the impairing effects of muscimol, TCN-201, anisomycin, and clonidine on reconsolidation. Together, the present findings demonstrate interacting mechanisms through which the NR can regulate contextual fear memory restabilization.
Collapse
Affiliation(s)
- Fernanda Troyner
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Leandro Jose Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
19
|
Durán-Carabali LE, Odorcyk FK, Greggio S, Venturin GT, Sanches EF, Schu GG, Carvalho AS, Pedroso TA, de Sá Couto-Pereira N, Da Costa JC, Dalmaz C, Zimmer ER, Netto CA. Pre- and early postnatal enriched environmental experiences prevent neonatal hypoxia-ischemia late neurodegeneration via metabolic and neuroplastic mechanisms. J Neurochem 2020; 157:1911-1929. [PMID: 33098090 DOI: 10.1111/jnc.15221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.
Collapse
Affiliation(s)
- Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eduardo Farias Sanches
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Garcia Schu
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrey Soares Carvalho
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natividade de Sá Couto-Pereira
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Rigon Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
20
|
Thalamic nucleus reuniens regulates fear memory destabilization upon retrieval. Neurobiol Learn Mem 2020; 175:107313. [DOI: 10.1016/j.nlm.2020.107313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022]
|
21
|
Marin FN, Franzen JM, Troyner F, Molina VA, Giachero M, Bertoglio LJ. Taking advantage of fear generalization-associated destabilization to attenuate the underlying memory via reconsolidation intervention. Neuropharmacology 2020; 181:108338. [PMID: 33002500 DOI: 10.1016/j.neuropharm.2020.108338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/05/2023]
Abstract
Upon retrieval, an aversive memory can undergo destabilization and reconsolidation. A traumatic-like memory, however, may be resistant to this process. The present study sought to contribute with a strategy to overcome this potential issue by investigating whether generalized fear retrieval is susceptible to destabilization-reconsolidation that can be pharmacologically modified. We hypothesized that exposure to a context that elicits moderate generalization levels would allow a malleable memory state. We developed a fear conditioning protocol in context A (cxt-A) paired with yohimbine administration to promote significant fear to a non-conditioned context B (cxt-B) in rats, mimicking the enhanced noradrenergic activity reported after traumatic events in humans. Next, we attempted to impair the reconsolidation phase by administering clonidine (CLO) immediately after exposure to cxt-A, cxt-B, or a third context C (cxt-C) neither conditioned nor generalized. CLO administered post-cxt-B exposure for two consecutive days subsequently resulted in decreased freezing levels in cxt-A. CLO after cxt-B only once, after cxt-A or cxt-C in two consecutive days, or independently of cxt-B exposures did not affect fear in a later test. A 6-h-delay in CLO treatment post-cxt-B exposures produced no effects, and nimodipine administered pre-cxt-B exposures precluded the CLO action. We then quantified the Egr1/Zif268 protein expression following cxt-B exposures and CLO treatments. We found that these factors interact to modulate this memory destabilization-reconsolidation mechanism in the basolateral amygdala but not the dorsal CA1 hippocampus. Altogether, memory destabilization can accompany generalized fear expression; thus, we may exploit it to potentiate reconsolidation blockers' action.
Collapse
Affiliation(s)
- Fernanda Navarro Marin
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jaqueline Maisa Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fernanda Troyner
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Victor Alejandro Molina
- Departamento de Farmacología, IFEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo Giachero
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina.
| | - Leandro Jose Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
22
|
Sun K, Xiao L, Wu Y, Zuo D, Zhang C, Liu S, He Z, Rong S, Wang F, Sun T. GABAergic neurons in the insular cortex play an important role in cue-morphine reward memory reconsolidation. Life Sci 2020; 254:117655. [DOI: 10.1016/j.lfs.2020.117655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/26/2023]
|
23
|
Trask S, Dulka BN, Helmstetter FJ. Age-Related Memory Impairment Is Associated with Increased zif268 Protein Accumulation and Decreased Rpt6 Phosphorylation. Int J Mol Sci 2020; 21:E5352. [PMID: 32731408 PMCID: PMC7432048 DOI: 10.3390/ijms21155352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/26/2023] Open
Abstract
Aging is associated with cognitive decline, including impairments in the ability to accurately form and recall memories. Some behavioral and brain changes associated with aging are evident as early as middle age, making the understanding of associated neurobiological mechanisms essential to aid in efforts aimed at slowing cognitive decline throughout the lifespan. Here, we found that both 15-month-old and 22-month-old rats showed impaired memory recall following trace fear conditioning. This behavioral deficit was accompanied by increased zif268 protein accumulation relative to 3-month-old animals in the medial prefrontal cortex, the dorsal and ventral hippocampi, the anterior and posterior retrosplenial cortices, the lateral amygdala, and the ventrolateral periaqueductal gray. Elevated zif268 protein levels corresponded with decreases in phosphorylation of the Rpt6 proteasome regulatory subunit, which is indicative of decreased engagement of activity-driven protein degradation. Together, these results identify several brain regions differentially impacted by aging and suggest that the accumulation of proteins associated with memory retrieval, through reduced proteolytic activity, is associated with age-related impairments in memory retention.
Collapse
Affiliation(s)
| | | | - Fred J. Helmstetter
- Department of Psychology, The University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA; (S.T.); (B.N.D.)
| |
Collapse
|