1
|
Sosa-Acosta P, Quiñones-Vega M, Guedes JDS, Rocha D, Guida L, Vasconcelos Z, Nogueira FCS, Domont GB. Multiomics Approach Reveals Serum Biomarker Candidates for Congenital Zika Syndrome. J Proteome Res 2024; 23:1200-1220. [PMID: 38390744 DOI: 10.1021/acs.jproteome.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Danielle Rocha
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | - Letícia Guida
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | | | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Zaworski PG, Schwartz R, Burr J, Skutnik D, Mollin A, Kumar B, Ngumah Q, Welch E, Johnson B, Narasimhan J, Weetall M. Quantitation of Pax-6 protein in ocular impression cytology samples using an electrochemiluminescence immunoassay. Anal Biochem 2022; 656:114876. [PMID: 36058293 DOI: 10.1016/j.ab.2022.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
Abstract
Paired box protein Pax-6 (oculothrombin) is a transcription factor that plays an important regulatory role in ocular, brain, and pancreatic development. Mutations of the PAX6 gene cause aniridia and Peters anomaly. Reduction in Pax-6 protein is also associated with ocular diseases such as dry eye. An electrochemiluminescence immunoassay method using the Meso Scale Discovery platform was developed to measure Pax-6 protein levels in corneal epithelial cells obtained by impression cytology. Impression cytology involves harvesting ocular epithelial cells by applying a polyethersulfone membrane patch briefly to the ocular surface using a commercially available EYEPRIM™ device. The epithelial cells that adhere to the membrane patch of the EYEPRIM™ device provide a biological sample which can be assayed for Pax-6 protein levels. Assay development identified an antibody pair capable of detecting purified recombinant Pax-6 protein produced in mammalian cells. The optimized assay has a dynamic range of 24 pg mL-1 to 100,000 pg mL-1 and a lower limit of quantification of 24 pg mL-1. Assay selectivity was demonstrated using either HeLa or HEK293 cells transfected with inhibitory RNA. Finally, the method was validated by measuring Pax-6 protein levels in impression cytology acquired samples obtained using the EYEPRIM™ device from rabbit cornea.
Collapse
Affiliation(s)
| | | | - Jeffrey Burr
- PharmOptima, 6710 Quality Way, Portage, MI, 49002, USA
| | | | - Anna Mollin
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Binit Kumar
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Quintus Ngumah
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Ellen Welch
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Briana Johnson
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Jana Narasimhan
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, 07080, USA
| | - Marla Weetall
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, 07080, USA.
| |
Collapse
|
3
|
Rosa-Fernandes L, Bedrat A, dos Santos MLB, Pinto A, Lucena E, Silva TP, Melo RC, Palmisano G, Cardoso CA, Barbosa RH. Global RNAseq of ocular cells reveals gene dysregulation in both asymptomatic and with Congenital Zika Syndrome infants exposed prenatally to Zika virus. Exp Cell Res 2022; 414:113086. [DOI: 10.1016/j.yexcr.2022.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
|
4
|
Sosa-Acosta P, Melani RD, Quiñones-Vega M, Melo A, Garcez PP, Nogueira FCS, Domont GB. Proteomics of ZIKV infected amniotic fluids of microcephalic fetuses reveals extracellular matrix and immune system dysregulation. Proteomics Clin Appl 2021; 16:e2100041. [PMID: 34676661 DOI: 10.1002/prca.202100041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022]
Abstract
During pregnancy, the vertical transmission of the Zika virus (ZIKV) can cause some disorders in the fetus, called Congenital Zika Syndrome (CZS). Several efforts have been made to understand the molecular mechanism of the CZS. However, the study of CZS pathogenesis through infected human samples is scarce. Therefore, the main goal of this study is to identify and understand the biological processes affected by CZS development. We analyzed by a shotgun proteomic approach the amniotic fluid of pregnant women infected with Zika carrying microcephalic (MC+ ) or non-microcephalic (Z+ ) fetuses compared to Zika negative controls (CTR). Several groups of extracellular matrix (ECM) proteins were dysregulated in the Z+ and MC+ patients, triggering an opposite dysregulation. The down-regulation of the ECM proteins in the MC+ groups can be another factor that contributes to CZS. On the contrary, the Z+ group could be developing a neuroprotective response through ECM proteins up-regulation. The neutrophil degranulation process was disrupted in the Z+ and MC+ groups, where the MC+ groups showed a complex dysregulation. These results suggest that the microcephalic phenotypes are modulated by a down-regulation of the ECM and the impairment of the innate immune system processes.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Adriana Melo
- Instituto Pesquisa Professor Joaquim Amorim Neto (IPESQ), Campina Grande, Paraíba, Brazil
| | - Patrícia P Garcez
- Institute of Biomedical Science, Federal University of Rio de Janeiro, RJ, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
5
|
The impact of Zika virus exposure on the placental proteomic profile. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166270. [PMID: 34582966 DOI: 10.1016/j.bbadis.2021.166270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022]
Abstract
Zika virus (ZIKV) infection has caused severe unexpected clinical outcomes in neonates and adults during the recent outbreak in Latin America, particularly in Brazil. Congenital malformations associated with ZIKV have been frequently reported; nevertheless, the mechanism of vertical transmission and the involvement of placental cells remains unclear. In this study, we applied quantitative proteomics analysis in a floating explant model of chorionic villi of human placental tissues incubated with ZIKV and with ZIKV pre-adsorbed with anti-ZIKV envelope protein. Proteomic data are available via ProteomeXchange with identifier PXD025764. Altered levels of proteins were involved in cell proliferation, apoptosis, inflammatory processes, and the integrin-cytoskeleton complex. Antibody-opsonized ZIKV particles differentially modulated the pattern of protein expression in placental cells; this phenomenon may play a pivotal role in determining the course of infection and the role of mixed infections. The expression of specific proteins was also evaluated by immunoperoxidase assays. These data fill gaps in our understanding of early events after ZIKV placental exposure and help identify infection control targets.
Collapse
|
6
|
Bozkurt E, Özateş S, Muhafız E, Yılmaz F, Calıskan O. Ocular Surface and Conjunctival Cytology Findings in Patients With Confirmed COVID-19. Eye Contact Lens 2021; 47:168-173. [PMID: 33060413 DOI: 10.1097/icl.0000000000000752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE To assess the effect of severe acute respiratory syndrome coronavirus-2 infection on the conjunctiva and tear film. METHODS Thirty-eight patients with confirmed COVID-19 and 31 healthy controls were included in this prospective and observational study. Individuals with COVID-19 formed the patient group, and healthy individuals formed the control group. Conjunctival impression cytology (CIC), TBUT, Schirmer II test, and ocular surface disease index were evaluated in all participants. RESULTS No significant difference was observed regarding the mean age and gender between the groups (P=0.786 and P=0.122, respectively). The mean TBUT and Schirmer II test results did not differ between the two groups (P=0.496 and P=0.447, respectively). The CIC results revealed decreased density and cell size of goblet cells and moderate to high enlargement, squamous changes, and increased nucleocytoplasmic ratio in nongoblet epithelial cells in the COVID-19 group compared with the control group. Based on the Nelson classification in CIC samples, 60.6% of the COVID-19 group and 19.4% of the control group had changes consistent with grade 2 or above. The presence of neutrophils in CIC was significantly higher in the COVID-19 group (P<0.001), whereas the presence of lymphocyte was similar between the two groups (P=0.247). CONCLUSION This study revealed the pathological conjunctival alterations in patients with COVID-19 and demonstrated that pathological ocular surface alterations may present even at the beginning of COVID-19 without clinically significant ocular manifestation.
Collapse
Affiliation(s)
- Erdinç Bozkurt
- Department of Ophthalmology (E.B., E.M.), Faculty of Medicine, Kafkas University, Kars, Türkiye; Department of Ophthalmology (S.Ö.), Okan University, Istanbul, Türkiye; and Departments of Pathology (F.Y.), and Infectious Disease and Clinical Microbiology (O.C.), Harakani State Hospital, Kars, Türkiye
| | | | | | | | | |
Collapse
|
7
|
Rosa-Fernandes L, Barbosa RH, dos Santos MLB, Angeli CB, Silva TP, Melo RCN, de Oliveira GS, Lemos B, Van Eyk JE, Larsen MR, Cardoso CA, Palmisano G. Cellular Imprinting Proteomics Assay: A Novel Method for Detection of Neural and Ocular Disorders Applied to Congenital Zika Virus Syndrome. J Proteome Res 2020; 19:4496-4515. [PMID: 32686424 PMCID: PMC7640952 DOI: 10.1021/acs.jproteome.0c00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Congenital Zika syndrome was first described due to increased incidence of congenital abnormalities associated with Zika virus (ZIKV) infection. Since the eye develops as part of the embryo central nervous system (CNS) structure, it becomes a specialized compartment able to display symptoms of neurodegenerative diseases and has been proposed as a noninvasive approach to the early diagnosis of neurological diseases. Ocular lesions result from defects that occurred during embryogenesis and can become apparent in newborns exposed to ZIKV. Furthermore, the absence of microcephaly cannot exclude the occurrence of ocular lesions and other CNS manifestations. Considering the need for surveillance of newborns and infants with possible congenital exposure, we developed a method termed cellular imprinting proteomic assay (CImPA) to evaluate the ocular surface proteome specific to infants exposed to ZIKV during gestation compared to nonexposure. CImPA combines surface cells and fluid capture using membrane disks and a large-scale quantitative proteomics approach, which allowed the first-time report of molecular alterations such as neutrophil degranulation, cell death signaling, ocular and neurological pathways, which are associated with ZIKV infection with and without the development of congenital Zika syndrome, CZS. Particularly, infants exposed to ZIKV during gestation and without early clinical symptoms could be detected using the CImPA method. Lastly, this methodology has broad applicability as it could be translated in the study of several neurological diseases to identify novel diagnostic biomarkers. Data are available via ProteomeXchange with identifier PXD014038.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense, Denmark
| | - Raquel Hora Barbosa
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Molecular
and Integrative Physiological Sciences Program, Department of Environmental
Health, Harvard School of Public Health, Boston, Massachusetts, United States
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Genetics
Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Maria Luiza B. dos Santos
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Claudia B. Angeli
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thiago P. Silva
- Laboratory
of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Rossana C. N. Melo
- Laboratory
of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bernardo Lemos
- Molecular
and Integrative Physiological Sciences Program, Department of Environmental
Health, Harvard School of Public Health, Boston, Massachusetts, United States
| | - Jennifer E Van Eyk
- Advanced
Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker
Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Martin R. Larsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense, Denmark
| | - Claudete Araújo Cardoso
- Maternal
and Child Department, Faculty of Medicine, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics
Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|