1
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Cuevas-Diaz Duran R, Li Y, Garza Carbajal A, You Y, Dessauer CW, Wu J, Walters ET. Major Differences in Transcriptional Alterations in Dorsal Root Ganglia Between Spinal Cord Injury and Peripheral Neuropathic Pain Models. J Neurotrauma 2023; 40:883-900. [PMID: 36178348 PMCID: PMC10150729 DOI: 10.1089/neu.2022.0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic, often intractable, pain is caused by neuropathic conditions such as traumatic peripheral nerve injury (PNI) and spinal cord injury (SCI). These conditions are associated with alterations in gene and protein expression correlated with functional changes in somatosensory neurons having cell bodies in dorsal root ganglia (DRGs). Most studies of DRG transcriptional alterations have utilized PNI models where axotomy-induced changes important for neural regeneration may overshadow changes that drive neuropathic pain. Both PNI and SCI produce DRG neuron hyperexcitability linked to pain, but contusive SCI produces little peripheral axotomy or peripheral nerve inflammation. Thus, comparison of transcriptional signatures of DRGs across PNI and SCI models may highlight pain-associated transcriptional alterations in sensory ganglia that do not depend on peripheral axotomy or associated effects such as peripheral Wallerian degeneration. Data from our rat thoracic SCI experiments were combined with meta-analysis of published whole-DRG RNA-seq datasets from prominent rat PNI models. Striking differences were found between transcriptional responses to PNI and SCI, especially in regeneration-associated genes (RAGs) and long noncoding RNAs (lncRNAs). Many transcriptomic changes after SCI also were found after corresponding sham surgery, indicating they were caused by injury to surrounding tissue, including bone and muscle, rather than to the spinal cord itself. Another unexpected finding was of few transcriptomic similarities between rat neuropathic pain models and the only reported transcriptional analysis of human DRGs linked to neuropathic pain. These findings show that DRGs exhibit complex transcriptional responses to central and peripheral neural injury and associated tissue damage. Although only a few genes in DRG cells exhibited similar changes in expression across all the painful conditions examined here, these genes may represent a core set whose transcription in various DRG cell types is sensitive to significant bodily injury, and which may play a fundamental role in promoting neuropathic pain.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Yong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anibal Garza Carbajal
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yanan You
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Drieu A, Lanquetin A, Prunotto P, Gulhan Z, Pédron S, Vegliante G, Tolomeo D, Serrière S, Vercouillie J, Galineau L, Tauber C, Kuhnast B, Rubio M, Zanier ER, Levard D, Chalon S, Vivien D, Ali C. Persistent neuroinflammation and behavioural deficits after single mild traumatic brain injury. J Cereb Blood Flow Metab 2022; 42:2216-2229. [PMID: 35945692 PMCID: PMC9670002 DOI: 10.1177/0271678x221119288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Despite an apparently silent imaging, some patients with mild traumatic brain injury (TBI) experience cognitive dysfunctions, which may persist chronically. Brain changes responsible for these dysfunctions are unclear and commonly overlooked. It is thus crucial to increase our understanding of the mechanisms linking the initial event to the functional deficits, and to provide objective evidence of brain tissue alterations underpinning these deficits. We first set up a murine model of closed-head controlled cortical impact, which provoked persistent cognitive and sensorimotor deficits, despite no evidence of brain contusion or bleeding on MRI, thus recapitulating features of mild TBI. Molecular MRI for P-selectin, a key adhesion molecule, detected no sign of cerebrovascular inflammation after mild TBI, as confirmed by immunostainings. By contrast, in vivo PET imaging with the TSPO ligand [18F]DPA-714 demonstrated persisting signs of neuroinflammation in the ipsilateral cortex and hippocampus after mild TBI. Interestingly, immunohistochemical analyses confirmed these spatio-temporal profiles, showing a robust parenchymal astrogliosis and microgliosis, at least up to 3 weeks post-injury in both the cortex and hippocampus. In conclusion, we show that even one single mild TBI induces long-term behavioural deficits, associated with a persistent neuro-inflammatory status that can be detected by PET imaging.
Collapse
Affiliation(s)
- Antoine Drieu
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Anastasia Lanquetin
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Paul Prunotto
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Zuhal Gulhan
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Swannie Pédron
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Gloria Vegliante
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Sophie Serrière
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | | | | | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Bertrand Kuhnast
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm,
Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Marina Rubio
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Elisa R Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche
Mario Negri, IRCCS, Milan, Italy
| | - Damien Levard
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, INSERM, Tours,
France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
- Department of Clinical Research, Caen-Normandie Hospital (CHU),
Caen, France
| | - Carine Ali
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237,
Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain
@ Caen-Normandie, Cyceron, France
| |
Collapse
|
4
|
Hartung JE, Moy JK, Loeza-Alcocer E, Nagarajan V, Jostock R, Christoph T, Schroeder W, Gold MS. Voltage-gated calcium currents in human dorsal root ganglion neurons. Pain 2022; 163:e774-e785. [PMID: 34510139 PMCID: PMC8882208 DOI: 10.1097/j.pain.0000000000002465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Voltage-gated calcium channels in sensory neurons underlie processes ranging from neurotransmitter release to gene expression and remain a therapeutic target for the treatment of pain. Yet virtually all we know about voltage-gated calcium channels has been obtained through the study of rodent sensory neurons and heterologously expressed channels. To address this, high voltage-activated (HVA) Ca2+ currents in dissociated human and rat dorsal root ganglion neurons were characterized with whole-cell patch clamp techniques. The HVA currents from both species shared basic biophysical and pharmacological properties. However, HVA currents in human neurons differed from those in the rat in at least 3 potentially important ways: (1) Ca2+ current density was significantly smaller, (2) the proportion of nifedipine-sensitive currents was far greater, and (3) a subpopulation of human neurons displayed relatively large constitutive current inhibition. These results highlight the need to for the study of native proteins in their native environment before initiating costly clinical trials.
Collapse
Affiliation(s)
- Jane E Hartung
- University of Pittsburgh School of Medicine, Department of Neurobiology, PA, USA
| | - Jamie K Moy
- University of Pittsburgh School of Medicine, Department of Neurobiology, PA, USA
| | | | - Vidhya Nagarajan
- University of Pittsburgh School of Medicine, Department of Neurobiology, PA, USA
| | | | | | | | - Michael S Gold
- University of Pittsburgh School of Medicine, Department of Neurobiology, PA, USA
| |
Collapse
|
5
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
6
|
Levine A, Liktor-Busa E, Karlage KL, Giancotti L, Salvemini D, Vanderah TW, Largent-Milnes TM. DAGLα Inhibition as a Non-invasive and Translational Model of Episodic Headache. Front Pharmacol 2021; 11:615028. [PMID: 33584293 PMCID: PMC7874129 DOI: 10.3389/fphar.2020.615028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Recent findings suggested that Clinical Endocannabinoid Deficiency underlies the pathophysiology of pain disorders, including migraine and headache. In models of medication overuse headache induced by sustained administration of sumatriptan or morphine, 2-AG levels were selectively depleted in the periaqueductal gray (PAG) and anandamide (AEA) increased in the cortex suggesting distinct regulation of the endocannabinoid system during headache pain. These results led to the hypothesis that blockade of DAGL, to reduce 2-AG levels would induce headache-like behaviors as a new, translationally relevant model of episodic headache. Our study investigated whether non-selective and selective blockade of DAGL, the main biosynthetic enzyme for 2-AG, induced periorbital and hind-paw allodynia, photophobia, anxiety-like behaviors, responsivity to abortive anti-migraine agents, and 2-AG/AEA levels. Injection of non-selective DAGL (DH376, 10 mg/kg, IP) and selective DAGLα (LEI106, 20 mg/kg, IP) inhibitors, but not DAGLβ agents, induced facial sensitivity in 100% and ∼60% of female and male rats, respectively, without induction of peripheral sensitivity. Notably, male rats showed significantly less sensitivity than female rats after DAGLα inhibition, suggesting sexual dimorphism in this mechanism. Importantly, LEI106 induced periorbital allodynia was attenuated by administration of the clinically available abortive antimigraine agents, sumatriptan and olcegepant. Selective DAGLα inhibition induced significant photophobia as measured by the light-dark box, without anxiety like behaviors or changes in voluntary movement. Analysis of AEA and 2-AG levels at the time of peak pain sensitivity revealed reductions in 2-AG in the visual cortex and periaqueductal gray (PAG), without altering anandamide or significantly increasing diacylglycerol levels. These results provide foundational evidence for DAGL-2AG in the induction of headache-like pain and photophobia without extracephalic allodynia, thus modeling the clinical episodic migraine. Mechanistically, behavioral measures of headache sensitivity after DAGL inhibition suggests that reduced 2-AG signaling in the cortex and PAG, but not the trigeminal nucleus caudalis or trigeminal ganglia, drives headache initiation. Therefore, episodic DAGL inhibition, which reduces the time, cost, and invasiveness of currently accepted models of headache, may fill the need for episodic migraine/headache models mirroring clinical presentation. Moreover, use of this approach may provide an avenue to study the transition from episodic to chronic headache.
Collapse
Affiliation(s)
- Aidan Levine
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Kelly L Karlage
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Luigi Giancotti
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
7
|
Ewan EE, Avraham O, Carlin D, Gonçalves TM, Zhao G, Cavalli V. Ascending dorsal column sensory neurons respond to spinal cord injury and downregulate genes related to lipid metabolism. Sci Rep 2021; 11:374. [PMID: 33431991 PMCID: PMC7801468 DOI: 10.1038/s41598-020-79624-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Regeneration failure after spinal cord injury (SCI) results in part from the lack of a pro-regenerative response in injured neurons, but the response to SCI has not been examined specifically in injured sensory neurons. Using RNA sequencing of dorsal root ganglion, we determined that thoracic SCI elicits a transcriptional response distinct from sciatic nerve injury (SNI). Both SNI and SCI induced upregulation of ATF3 and Jun, yet this response failed to promote growth in sensory neurons after SCI. RNA sequencing of purified sensory neurons one and three days after injury revealed that unlike SNI, the SCI response is not sustained. Both SCI and SNI elicited the expression of ATF3 target genes, with very little overlap between conditions. Pathway analysis of differentially expressed ATF3 target genes revealed that fatty acid biosynthesis and terpenoid backbone synthesis were downregulated after SCI but not SNI. Pharmacologic inhibition of fatty acid synthase, the enzyme generating palmitic acid, decreased axon growth and regeneration in vitro. These results support the notion that decreased expression of lipid metabolism-related genes after SCI, including fatty acid synthase, may restrict axon regenerative capacity after SCI.
Collapse
Affiliation(s)
- Eric E Ewan
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Dan Carlin
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Tassia Mangetti Gonçalves
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8108, St. Louis, MO, 63110-1093, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|