1
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
2
|
Singh S, Sarroza D, English A, Whittington D, Dong A, Malamas M, Makriyannis A, van der Stelt M, Li Y, Zweifel L, Bruchas MR, Land BB, Stella N. P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism. Br J Pharmacol 2024; 181:2459-2477. [PMID: 38581262 PMCID: PMC11936313 DOI: 10.1111/bph.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dennis Sarroza
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Anthony English
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Michael R. Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Benjamin B. Land
- Department of Pharmacology, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| |
Collapse
|
3
|
Barti B, Dudok B, Kenesei K, Zöldi M, Miczán V, Balla GY, Zala D, Tasso M, Sagheddu C, Kisfali M, Tóth B, Ledri M, Vizi ES, Melis M, Barna L, Lenkei Z, Soltész I, Katona I. Presynaptic nanoscale components of retrograde synaptic signaling. SCIENCE ADVANCES 2024; 10:eado0077. [PMID: 38809980 PMCID: PMC11135421 DOI: 10.1126/sciadv.ado0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.
Collapse
Affiliation(s)
- Benjámin Barti
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Barna Dudok
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Departments of Neurology and Neuroscience, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Kata Kenesei
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Vivien Miczán
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Gyula Y. Balla
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Diana Zala
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Mariana Tasso
- Institute of Nanosystems, School of Bio and Nanotechnologies, National University of San Martín - CONICET, 25 de Mayo Ave., 1021 San Martín, Argentina
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Máté Kisfali
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- BiTrial Ltd., Tállya st 23, H-1121 Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért square 4, H-1111 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Marco Ledri
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 17, BMC A11, 221 84 Lund, Sweden
| | - E. Sylvester Vizi
- Molecular Pharmacology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - László Barna
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
| | - Zsolt Lenkei
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Iván Soltész
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| |
Collapse
|
4
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Chettri D, Verma AK. Biological significance of carbohydrate active enzymes and searching their inhibitors for therapeutic applications. Carbohydr Res 2023; 529:108853. [PMID: 37235954 DOI: 10.1016/j.carres.2023.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Glycans are the most abundant and diverse group of biomolecules with a crucial role in all the biological processes. Their structural and functional diversity is not genetically encoded, but depends on Carbohydrate Active Enzymes (CAZymes) which carry out all catalytic activities in terms of synthesis, modification, and degradation. CAZymes comprise large families of enzymes with specific functions and are widely used for various commercial applications ranging from biofuel production to textile and food industries with impact on biorefineries. To understand the structure and functional mechanism of these CAZymes for their modification for industrial use, together with knowledge of therapeutic aspects of their dysfunction associated with various diseases, CAZyme inhibitors can be used as a valuable tool. In search for new inhibitors, the screening of various secondary metabolites using high-throughput techniques and rational design techniques have been explored. The inhibitors can thus help tune CAZymes and are emerging as a potential research interest.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
6
|
Westenbroek R, Kaplan J, Viray K, Stella N. The serine hydrolase ABHD6 controls survival and thermally induced seizures in a mouse model of Dravet syndrome. Neurobiol Dis 2023; 180:106099. [PMID: 36990366 DOI: 10.1016/j.nbd.2023.106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Evidence suggests that inhibition of α/β hydrolase-domain containing 6 (ABHD6) reduces seizures; however, the molecular mechanism of this therapeutic response remains unknown. We discovered that heterozygous expression of Abhd6 (Abhd6+/-) significantly reduced the premature lethality of Scn1a+/- mouse pups, a genetic mouse model of Dravet Syndrome (DS). Both Abhd6+/- mutation and pharmacological inhibition of ABHD6 reduced the duration and incidence of thermally induced seizures in Scn1a+/- pups. Mechanistically, the in vivo anti-seizure response resulting from ABHD6 inhibition is mediated by potentiation of gamma-aminobutyric acid receptors Type-A (GABAAR). Brain slice electrophysiology showed that blocking ABHD6 potentiates extrasynaptic (tonic) GABAAR currents that reduce dentate granule cell excitatory output without affecting synaptic (phasic) GABAAR currents. Our results unravel an unexpected mechanistic link between ABHD6 activity and extrasynaptic GABAAR currents that controls hippocampal hyperexcitability in a genetic mouse model of DS. BRIEF SUMMARY: This study provides the first evidence for a mechanistic link between ABHD6 activity and the control of extrasynaptic GABAAR currents that controls hippocampal hyperexcitability in a genetic mouse model of Dravet Syndrome and can be targeted to dampened seizures.
Collapse
Affiliation(s)
- Ruth Westenbroek
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joshua Kaplan
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Psychology, Western Washington University, Bellingham, WA 98225, USA
| | - Katie Viray
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Honeder SE, Tomin T, Schinagl M, Pfleger R, Hoehlschen J, Darnhofer B, Schittmayer M, Birner‐Gruenberger R. Research Advances Through Activity‐Based Lipid Hydrolase Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sophie Elisabeth Honeder
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Maximilian Schinagl
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Raphael Pfleger
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Julia Hoehlschen
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Barbara Darnhofer
- Core Facility Mass Spectrometry Center for Medical Research Medical University of Graz Neue Stiftingtalstraße 24 8036 Graz Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Ruth Birner‐Gruenberger
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| |
Collapse
|
8
|
Depmeier T, Lange T, Hanekamp W, Strünker T, Lehr M. HPLC fluorescence assay for measuring the activity of diacylglycerol lipases and the action of inhibitors thereof. Anal Biochem 2022; 657:114889. [PMID: 36113549 DOI: 10.1016/j.ab.2022.114889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022]
Abstract
1,2-Diacylglycerol lipases (DAGLs) are the most important enzymes for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), and their role in various pathophysiological conditions is currently under investigation. We synthesized a new 1,2-diacylglycerol substrate for these enzymes with a fluorogenic 4-(pyren-1-yl)butanoyl residue in sn-2 position. Using the fluorescent substrate, we measured DAGL activity in rat liver S9 fraction and brain microsomes. To this end, 2-acylglycerol release was directly determined via HPLC and fluorescence detection without further sample clean-up. The method was used to evaluate the action of several known DAGL inhibitors. These showed partly significant differences in their inhibitory effect on DAGLs in liver versus brain preparations. The method was verified by measuring the IC50 values for a subset of inhibitors by HPLC and single-quad MS detection using the deuterated natural DAGL substrate 1-stearoyl-2-arachidonoyl-sn-glycerol-d8. DAGL activity could also be measured with the new pyrene-labeled substrate by HPLC and UV instead of fluorescence detection, if larger quantities of the samples were injected into the HPLC system. Furthermore, using intact human sperm, we show that the substrate is also converted by DAGL enzymes in human cells.
Collapse
Affiliation(s)
- Tim Depmeier
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149, Münster, Germany
| | - Thomas Lange
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149, Münster, Germany
| | - Walburga Hanekamp
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149, Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstrasse 11, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149, Münster, Germany.
| |
Collapse
|
9
|
Pusch LM, Riegler-Berket L, Oberer M, Zimmermann R, Taschler U. α/β-Hydrolase Domain-Containing 6 (ABHD6)- A Multifunctional Lipid Hydrolase. Metabolites 2022; 12:761. [PMID: 36005632 PMCID: PMC9412472 DOI: 10.3390/metabo12080761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
α/β-hydrolase domain-containing 6 (ABHD6) belongs to the α/β-hydrolase fold superfamily and was originally discovered in a functional proteomic approach designed to discover monoacylglycerol (MAG) hydrolases in the mouse brain degrading the endocannabinoid 2-arachidonoylglycerol. Subsequent studies confirmed that ABHD6 acts as an MAG hydrolase regulating cannabinoid receptor-dependent and -independent signaling processes. The enzyme was identified as a negative modulator of insulin secretion and regulator of energy metabolism affecting the pathogenesis of obesity and metabolic syndrome. It has been implicated in the metabolism of the lysosomal co-factor bis(monoacylglycerol)phosphate and in the surface delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Finally, ABHD6 was shown to affect cancer cell lipid metabolism and tumor malignancy. Here, we provide new insights into the experimentally derived crystal structure of ABHD6 and its possible orientation in biological membranes, and discuss ABHD6's functions in health and disease.
Collapse
Affiliation(s)
- Lisa-Maria Pusch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Lina Riegler-Berket
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
10
|
Gagestein B, Stevens AF, Fazio D, Florea BI, van der Wel T, Bakker AT, Fezza F, Dulk HD, Overkleeft HS, Maccarrone M, van der Stelt M. Chemical Proteomics Reveals Off-Targets of the Anandamide Reuptake Inhibitor WOBE437. ACS Chem Biol 2022; 17:1174-1183. [PMID: 35482948 PMCID: PMC9127799 DOI: 10.1021/acschembio.2c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anandamide or N-arachidonoylethanolamine (AEA) is a signaling lipid that modulates neurotransmitter release via activation of the type 1 cannabinoid receptor (CB1R) in the brain. Termination of anandamide signaling is thought to be mediated via a facilitated cellular reuptake process that utilizes a purported transporter protein. Recently, WOBE437 has been reported as a novel, natural product-based inhibitor of AEA reuptake that is active in cellular and in vivo models. To profile its target interaction landscape, we synthesized pac-WOBE, a photoactivatable probe derivative of WOBE437, and performed chemical proteomics in mouse neuroblastoma Neuro-2a cells. Surprisingly WOBE437, unlike the widely used selective inhibitor of AEA uptake OMDM-1, was found to increase AEA uptake in Neuro-2a cells. In line with this, WOBE437 reduced the cellular levels of AEA and related N-acylethanolamines (NAEs). Using pac-WOBE, we identified saccharopine dehydrogenase-like oxidoreductase (SCCPDH), vesicle amine transport 1 (VAT1), and ferrochelatase (FECH) as WOBE437-interacting proteins in Neuro-2a cells. Further genetic studies indicated that SCCPDH and VAT1 were not responsible for the WOBE437-induced reduction in NAE levels. Regardless of the precise mechanism of action of WOB437 in AEA transport, we have identified SSCPHD, VAT1, and FECH as unprecedented off-targets of this molecule which should be taken into account when interpreting its cellular and in vivo effects.
Collapse
Affiliation(s)
- Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Anna F. Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Domenico Fazio
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Bogdan I. Florea
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Alexander T. Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, Rome 00121, Italy
| | - Hans den Dulk
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Herman S. Overkleeft
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, Rome 00143, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
11
|
Zhang H, Li X, Liao D, Luo P, Jiang X. Alpha/Beta-Hydrolase Domain-Containing 6: Signaling and Function in the Central Nervous System. Front Pharmacol 2021; 12:784202. [PMID: 34925039 PMCID: PMC8675881 DOI: 10.3389/fphar.2021.784202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoid (eCB) signaling plays an important role in the central nervous system (CNS). α/β-Hydrolase domain-containing 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids such as endocannabinoid 2-arachidonoyl glycerol (2-AG). ABHD6 participates in neurotransmission, inflammation, brain energy metabolism, tumorigenesis and other biological processes and is a potential therapeutic target for various neurological diseases, such as traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, mental illness, and pain. This review summarizes the molecular mechanisms of action and biological functions of ABHD6, particularly its mechanism of action in the pathogenesis of neurological diseases, and provides a theoretical basis for new pharmacological interventions via targeting of ABHD6.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Levine A, Liktor-Busa E, Lipinski AA, Couture S, Balasubramanian S, Aicher SA, Langlais PR, Vanderah TW, Largent-Milnes TM. Sex differences in the expression of the endocannabinoid system within V1M cortex and PAG of Sprague Dawley rats. Biol Sex Differ 2021; 12:60. [PMID: 34749819 PMCID: PMC8577021 DOI: 10.1186/s13293-021-00402-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Several chronic pain disorders, such as migraine and fibromyalgia, have an increased prevalence in the female population. The underlying mechanisms of this sex-biased prevalence have yet to be thoroughly documented, but could be related to endogenous differences in neuromodulators in pain networks, including the endocannabinoid system. The cellular endocannabinoid system comprises the endogenous lipid signals 2-AG (2-arachidonoylglycerol) and AEA (anandamide); the enzymes that synthesize and degrade them; and the cannabinoid receptors. The relative prevalence of different components of the endocannabinoid system in specific brain regions may alter responses to endogenous and exogenous ligands. METHODS Brain tissue from naïve male and estrous staged female Sprague Dawley rats was harvested from V1M cortex, periaqueductal gray, trigeminal nerve, and trigeminal nucleus caudalis. Tissue was analyzed for relative levels of endocannabinoid enzymes, ligands, and receptors via mass spectrometry, unlabeled quantitative proteomic analysis, and immunohistochemistry. RESULTS Mass spectrometry revealed significant differences in 2-AG and AEA concentrations between males and females, as well as between female estrous cycle stages. Specifically, 2-AG concentration was lower within female PAG as compared to male PAG (*p = 0.0077); female 2-AG concentration within the PAG did not demonstrate estrous stage dependence. Immunohistochemistry followed by proteomics confirmed the prevalence of 2-AG-endocannabinoid system enzymes in the female PAG. CONCLUSIONS Our results suggest that sex differences exist in the endocannabinoid system in two CNS regions relevant to cortical spreading depression (V1M cortex) and descending modulatory networks in pain/anxiety (PAG). These basal differences in endogenous endocannabinoid mechanisms may facilitate the development of chronic pain conditions and may also underlie sex differences in response to therapeutic intervention.
Collapse
Affiliation(s)
- Aidan Levine
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Austin A Lipinski
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Sarah Couture
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Shreya Balasubramanian
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Paul R Langlais
- Endocrinology Division, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, 1501 N. Campbell Ave., Life Sciences North Rm 621, Tucson, AZ, 85724, USA.
| |
Collapse
|
13
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
14
|
Deng L, Viray K, Singh S, Cravatt B, Stella N. ABHD6 Controls Amphetamine-Stimulated Hyperlocomotion: Involvement of CB 1 Receptors. Cannabis Cannabinoid Res 2021; 7:188-198. [PMID: 34705543 PMCID: PMC9070749 DOI: 10.1089/can.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Activation of cannabinoid 1 receptors (CB1Rs) by endocannabinoids (eCBs) is controlled by both eCB production and eCB inactivation. Accordingly, inhibition of eCB hydrolyzing enzymes, monoacylglycerol lipase (MAGL) and α/β-hydrolase domain containing 6 (ABHD6), enhances eCB accumulation and CB1R activation. It is known that inhibition of MAGL regulates select CB1R-dependent behaviors in mice, including locomotor behaviors and their modulation by psychostimulants, but much less is known about the effect of inhibiting ABHD6 activity on such behaviors. Methods: We report a new mouse line that carries a genetic deletion of Abhd6 and evaluated its effect on spontaneous locomotion measured in a home cage monitoring system, motor coordination measured on a Rotarod, and amphetamine-stimulated hyperlocomotion and amphetamine sensitization (AS) measured in an open-field chamber. Results: ABHD6 knockout (KO) mice reached adulthood without exhibiting overt behavioral impairment, and we measured only mild reduction in spontaneous locomotion and motor coordination in adult ABHD6 KO mice compared to wild-type (WT) mice. Significantly, amphetamine-stimulated hyperlocomotion was enhanced by twofold in ABHD6 KO mice compared to WT mice and yet ABHD6 KO mice expressed AS to the same extent as WT mice. A twofold increase in amphetamine-stimulated hyperlocomotion was also measured in ABHD6 heterozygote mice and in WT mice treated with the ABHD6 inhibitor KT-182. It is known that amphetamine-stimulated hyperlocomotion is not affected by the CB1R antagonist, SR141617, and we discovered that the enhanced amphetamine-stimulated hyperlocomotion resulting from ABHD6 inhibition is blocked by SR141617. Conclusions: Our study suggests that ABHD6 controls amphetamine-stimulated hyperlocomotion by a mechanistic switch to a CB1R-dependent mechanism.
Collapse
Affiliation(s)
- Liting Deng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Katie Viray
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Simar Singh
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ben Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
15
|
Cao JK, Viray K, Shin M, Hsu KL, Mackie K, Westenbroek R, Stella N. ABHD6 Inhibition Rescues a Sex-Dependent Deficit in Motor Coordination in The HdhQ200/200 Mouse Model of Huntington's Disease. JOURNAL OF NEUROLOGY AND NEUROLOGICAL DISORDERS 2021; 7:106. [PMID: 37720694 PMCID: PMC10503675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Huntington's Disease is associated with motor behavior deficits that are lessened by few therapeutic options. This preliminary study tested if pharmacological inhibition of α/β-hydrolase domain containing 6 (ABHD6), a multifunctional enzyme expressed in the striatum, rescues behavioral deficits in HdhQ200/200 mice. Previous work has shown that this model exhibits a reduction in spontaneous locomotion and motor coordination at 8 and 10 months of age, with a more severe phenotype in female mice. Semi-quantitative immunohistochemistry analysis indicated no change in striatal ABHD6 expression at 8 months of age, but a 40% reduction by 10 months in female HdhQ200/200 mice compared to female wild-type (WT) littermates. At 8 months of age, acute ABHD6 inhibition rescued motor coordination deficits in female HdhQ200/200 mice without affecting WT performance. ABHD6 inhibition did not impact spontaneous locomotion, grip strength, or overall weight in either group, showing that effects were specific to motor coordination. At 10 months of age, semi-chronic ABHD6 inhibition by osmotic pump delivery also rescued motor coordination deficits in female HdhQ200/200 mice without affecting female WT littermates. Our preliminary study suggests that ABHD6 inhibition improves motor performance in female HdhQ200/200 mice.
Collapse
Affiliation(s)
- JK Cao
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - K Viray
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - M Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - K-L Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - K Mackie
- Department of Psychological and Brain Sciences, Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405, USA
| | - R Westenbroek
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - N Stella
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
17
|
Briand-Mésange F, Pons V, Allart S, Masquelier J, Chicanne G, Beton N, Payrastre B, Muccioli GG, Ausseil J, Davignon JL, Salles JP, Chap H. Glycerophosphodiesterase 3 (GDE3) is a lysophosphatidylinositol-specific ectophospholipase C acting as an endocannabinoid signaling switch. J Biol Chem 2020; 295:15767-15781. [PMID: 32917725 DOI: 10.1074/jbc.ra120.015278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Endocannabinoid signaling plays a regulatory role in various (neuro)biological functions. 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and although its canonical biosynthetic pathway involving phosphoinositide-specific phospholipase C and diacylglycerol lipase α is known, alternative pathways remain unsettled. Here, we characterize a noncanonical pathway implicating glycerophosphodiesterase 3 (GDE3, from GDPD2 gene). Human GDE3 expressed in HEK293T cell membranes catalyzed the conversion of lysophosphatidylinositol (LPI) into monoacylglycerol and inositol-1-phosphate. The enzyme was equally active against 1-acyl and 2-acyl LPI. When using 2-acyl LPI, where arachidonic acid is the predominant fatty acid, LC-MS analysis identified 2-AG as the main product of LPI hydrolysis by GDE3. Furthermore, inositol-1-phosphate release into the medium occurred upon addition of LPI to intact cells, suggesting that GDE3 is actually an ecto-lysophospholipase C. In cells expressing G-protein-coupled receptor GPR55, GDE3 abolished 1-acyl LPI-induced signaling. In contrast, upon simultaneous ex-pression of GDE3 and cannabinoid receptor CB2, 2-acyl LPI evoked the same signal as that induced by 2-AG. These data strongly suggest that, in addition to degrading the GPR55 LPI ligand, GDE3 can act as a switch between GPR55 and CB2 signaling. Coincident with a major expression of both GDE3 and CB2 in the spleen, spleens from transgenic mice lacking GDE3 displayed doubling of LPI content compared with WT mice. Decreased production of 2-AG in whole spleen was also observed, supporting the in vivo relevance of our findings. These data thus open a new research avenue in the field of endocannabinoid generation and reinforce the view of GPR55 and LPI being genuine actors of the endocannabinoid system.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Véronique Pons
- Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Sophie Allart
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Catholic University of Louvain, Brussels, Belgium
| | - Gaëtan Chicanne
- Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Nicolas Beton
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Bernard Payrastre
- Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Catholic University of Louvain, Brussels, Belgium
| | - Jérôme Ausseil
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Jean-Luc Davignon
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Jean-Pierre Salles
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Hugues Chap
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France.
| |
Collapse
|
18
|
Rodrigues MS, Ferreira C, Dias C, Pliássova A, Souza L, Ledo A, Laranjinha J, Cunha RA, Köfalvi A. An optimized spectrophotometric assay reveals increased activity of enzymes involved in 2-arachidonoyl glycerol turnover in the cerebral cortex of a rat model of Alzheimer's disease. Eur J Neurosci 2020; 55:1051-1062. [PMID: 32813905 DOI: 10.1111/ejn.14944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 01/29/2023]
Abstract
The endocannabinoid system is implicated in a plethora of neuropsychiatric disorders. However, it is technically challenging to assess the turnover of 2-arachidonoyl glycerol (2-AG), the principal endocannabinoid molecule in the brain. Two recent studies showed that diacylglycerol lipase α (DAGLα), an enzyme chiefly responsible for the cerebral production of 2-AG, also accepts the surrogate chromogenic substrate 4-nitrophenyl butyrate (4-NPB). Here, we aimed to optimize this spectrophotometric assay for ex vivo brain tissue, in particular, rat cerebrocortical homogenates, to measure the activity of the major enzymes responsible for the production and degradation of 2-AG. The initial velocity of 4-NPB hydrolysis was dependent on protein, substrate, and Ca2+ concentrations, and was sensitive to the non-selective serine hydrolase inhibitor, methoxy arachidonyl fluorophosphonate, the DAGLα inhibitors, OMDM188, tetrahydrolipstatin, and RHC80267, as well as the monoacylglycerol lipase (MAGL) inhibitor, JZL184, respectively. Next, we tested the usefulness of this assay in ex vivo brain tissue of rat models of human health conditions known to affect cerebrocortical 2-AG production, i.e. pathological stress and sporadic Alzheimer's disease (AD). In rats submitted to chronic restraint stress, cortical CB1 R density was significantly decreased, as assessed with radioligand binding. Nevertheless, 4-NPB hydrolysis remained at control levels. However, in rats 4 weeks after intracerebroventricular injection with streptozotocin - an established model of sporadic AD -, both CB1 R levels and 4-NPB hydrolysis and its DAGL- and MAGL-dependent fractions were significantly increased. Altogether, we optimized a simple complementary ex vivo technique for the quantification of DAGL and MAGL activity in brain samples.
Collapse
Affiliation(s)
- Matilde S Rodrigues
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cláudia Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cândida Dias
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Anna Pliássova
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lisiane Souza
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Ledo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Attila Köfalvi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Deng H, Li W. Therapeutic potential of targeting α/β-Hydrolase domain-containing 6 (ABHD6). Eur J Med Chem 2020; 198:112353. [PMID: 32371333 DOI: 10.1016/j.ejmech.2020.112353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023]
Abstract
α/β-Hydrolase domain 6 (ABHD6) is a transmembrane serine hydrolase that hydrolyzes monoacylglycerol (MAG) lipids, particularly the endogenous cannabinoid 2-arachidonoylglycerol (2-AG), in both central and peripheral tissues. ABHD6 and its substrates have been shown to be involved in the modulation of various (patho)physiological processes, including neurotransmission, inflammation, insulin secretion, adipose browning, food intake, autoimmune disorders, as well as neurological and metabolic diseases, making this enzyme a promising therapeutic target to treat several diseases. This review will focus on the molecular mechanism, biological functions and pathological roles of ABHD6, as well as recent efforts to develop ABHD6 inhibitors, providing a strong basis for the development of small molecules by targeting ABHD6 to treat diverse diseases.
Collapse
Affiliation(s)
- Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|