1
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
3
|
Yousefzadeh SA, Youngkin AE, Lusk NA, Wen S, Meck WH. Bidirectional role of microtubule dynamics in the acquisition and maintenance of temporal information in dorsolateral striatum. Neurobiol Learn Mem 2021; 183:107468. [PMID: 34058346 DOI: 10.1016/j.nlm.2021.107468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
Accurate and precise timing is crucial for complex and purposeful behaviors, such as foraging for food or playing a musical instrument. The brain is capable of processing temporal information in a coordinated manner, as if it contains an 'internal clock'. Similar to the need for the brain to orient itself in space in order to understand its surroundings, temporal orientation and tracking is an essential component of cognition as well. While there have been multiple models explaining the neural correlates of timing, independent lines of research appear to converge on the conclusion that populations of neurons in the dorsal striatum encode information relating to where a subject is in time relative to an anticipated goal. Similar to other learning processes, acquisition and maintenance of this temporal information is dependent on synaptic plasticity. Microtubules are cytoskeletal proteins that have been implicated in synaptic plasticity mechanisms and therefore are considered key elements in learning and memory. In this study, we investigated the role of microtubule dynamics in temporal learning by local infusions of microtubule stabilizing and destabilizing agents into the dorsolateral striatum. Our results suggested a bidirectional role for microtubules in timing, such that microtubule stabilization improves the maintenance of learned target durations, but impairs the acquisition of a novel duration. On the other hand, microtubule destabilization enhances the acquisition of novel target durations, while compromising the maintenance of previously learned durations. These findings suggest that microtubule dynamics plays an important role in synaptic plasticity mechanisms in the dorsolateral striatum, which in turn modulates temporal learning and time perception.
Collapse
Affiliation(s)
- S Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.
| | - Anna E Youngkin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Shufan Wen
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Mandwal A, Orlandi JG, Simon C, Davidsen J. A biochemical mechanism for time-encoding memory formation within individual synapses of Purkinje cells. PLoS One 2021; 16:e0251172. [PMID: 33961660 PMCID: PMC8104431 DOI: 10.1371/journal.pone.0251172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Within the classical eye-blink conditioning, Purkinje cells within the cerebellum are known to suppress their tonic firing rates for a well defined time period in response to the conditional stimulus after training. The temporal profile of the drop in tonic firing rate, i.e., the onset and the duration, depend upon the time interval between the onsets of the conditional and unconditional training stimuli. Direct stimulation of parallel fibers and climbing fiber by electrodes was found to be sufficient to reproduce the same characteristic drop in the firing rate of the Purkinje cell. In addition, the specific metabotropic glutamate-based receptor type 7 (mGluR7) was found responsible for the initiation of the response, suggesting an intrinsic mechanism within the Purkinje cell for the temporal learning. In an attempt to look for a mechanism for time-encoding memory formation within individual Purkinje cells, we propose a biochemical mechanism based on recent experimental findings. The proposed mechanism tries to answer key aspects of the “Coding problem” of Neuroscience by focusing on the Purkinje cell’s ability to encode time intervals through training. According to the proposed mechanism, the time memory is encoded within the dynamics of a set of proteins—mGluR7, G-protein, G-protein coupled Inward Rectifier Potassium ion channel, Protein Kinase A, Protein Phosphatase 1 and other associated biomolecules—which self-organize themselves into a protein complex. The intrinsic dynamics of these protein complexes can differ and thus can encode different time durations. Based on their amount and their collective dynamics within individual synapses, the Purkinje cell is able to suppress its own tonic firing rate for a specific time interval. The time memory is encoded within the effective dynamics of the biochemical reactions and altering these dynamics means storing a different time memory. The proposed mechanism is verified by both a minimal and a more comprehensive mathematical model of the conditional response behavior of the Purkinje cell and corresponding dynamical simulations of the involved biomolecules, yielding testable experimental predictions.
Collapse
Affiliation(s)
- Ayush Mandwal
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (AM); (JD)
| | - Javier G. Orlandi
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (AM); (JD)
| |
Collapse
|