1
|
Ouard N, Tali A, Souhoudji TD, Jebbouj R, El-Bouchikhi I, Rose CF, Ahboucha S. Different cortical and subcortical astroglial responsiveness in rats with acute liver failure. J Neuropathol Exp Neurol 2025; 84:412-422. [PMID: 40173416 DOI: 10.1093/jnen/nlaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication of liver failure. Previous studies described astroglia alterations in HE, but regional changes have not been well investigated. This study addresses regional astroglial response by exploring glial fibrillary acidic protein (GFAP) immunoreactivity in cortical structures including somatosensory (S1Tr and S1BF), piriform (Pir), and perirhinal (PRh) cortices, and subcortical regions including corpus callosum (CC), ventromedial thalamus (VMT), mammillothalamic tract (MTT), and dorsomedial hypothalamic nucleus (DHN) in rats with acute liver failure (ALF) sacrificed at coma stage. Our data showed decreased numbers of astrocytes in S1Tr, Pir, and CC in ALF rats. GFAP-immunoreactive cells were increased within other regions including PRh, VMT, MTT, and DHN. Cell morphometric analysis showed significant increase in GFAP-immunoreactive astrocyte processes and cell bodies in cortical and subcortical regions but not in CC and DHN. However, astrocyte perimeters were increased, particularly in S1Tr and VMT. Our study demonstrates regional specificity including (1) regions with astrocyte activation associated with an increase of GFAP-immunostaining and astrocyte cell counts, together with (2) unaltered GFAP components, and (3) regions characterized by presumably inactive astrocyte with a reduced GFAP-immunostaining. These findings may reflect either different regional alterations in HE, or stages of an alteration progressing differently in different regions.
Collapse
Affiliation(s)
- Nahla Ouard
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Assmaâ Tali
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Themoi Demsou Souhoudji
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Rajâa Jebbouj
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Ihssane El-Bouchikhi
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Christopher F Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Médicine Département, Université de Montréal, Montréal, Canada
| | - Samir Ahboucha
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| |
Collapse
|
2
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Hu K, Xu Y, Fan J, Liu H, Di C, Xu F, Wu L, Ding K, Zhang T, Wang L, Ai H, Xie L, Wang G, Liang Y. Feasibility exploration of GSH in the treatment of acute hepatic encephalopathy from the aspects of pharmacokinetics, pharmacodynamics, and mechanism. Front Pharmacol 2024; 15:1387409. [PMID: 38887546 PMCID: PMC11181355 DOI: 10.3389/fphar.2024.1387409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Our previous study highlighted the therapeutic potential of glutathione (GSH), an intracellular thiol tripeptide ubiquitous in mammalian tissues, in mitigating hepatic and cerebral damage. Building on this premise, we posited the hypothesis that GSH could be a promising candidate for treating acute hepatic encephalopathy (AHE). To verify this conjecture, we systematically investigated the feasibility of GSH as a therapeutic agent for AHE through comprehensive pharmacokinetic, pharmacodynamic, and mechanistic studies using a thioacetamide-induced AHE rat model. Our pharmacodynamic data demonstrated that oral GSH could significantly improve behavioral scores and reduce hepatic damage of AHE rats by regulating intrahepatic ALT, AST, inflammatory factors, and homeostasis of amino acids. Additionally, oral GSH demonstrated neuroprotective effects by alleviating the accumulation of intracerebral glutamine, down-regulating glutamine synthetase, and reducing taurine exposure. Pharmacokinetic studies suggested that AHE modeling led to significant decrease in hepatic and cerebral exposure of GSH and cysteine. However, oral GSH greatly enhanced the intrahepatic and intracortical GSH and CYS in AHE rats. Given the pivotal roles of CYS and GSH in maintaining redox homeostasis, we investigated the interplay between oxidative stress and pathogenesis/treatment of AHE. Our data revealed that GSH administration significantly relieved oxidative stress levels caused by AHE modeling via down-regulating the expression of NADPH oxidase 4 (NOX4) and NF-κB P65. Importantly, our findings further suggested that GSH administration significantly regulated the excessive endoplasmic reticulum (ER) stress caused by AHE modeling through the iNOS/ATF4/Ddit3 pathway. In summary, our study uncovered that exogenous GSH could stabilize intracerebral GSH and CYS levels to act on brain oxidative and ER stress, which have great significance for revealing the therapeutic effect of GSH on AHE and promoting its further development and clinical application.
Collapse
Affiliation(s)
- Kangrui Hu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yexin Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiye Fan
- Department of Pharmacy, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei Province, China
| | - Huafang Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chanjuan Di
- Hebei Zhitong Biopharmaceutical Co., Ltd., Gucheng, Hebei Province, China
| | - Feng Xu
- Hebei Zhitong Biopharmaceutical Co., Ltd., Gucheng, Hebei Province, China
| | - Linlin Wu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ke Ding
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tingting Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Leyi Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haoyu Ai
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lin Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | - Yan Liang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Anamika, Roy A, Trigun SK. Hippocampus mitochondrial MnSOD activation by a SIRT3 activator, honokiol, correlates with its deacetylation and upregulation of FoxO3a and PGC1α in a rat model of ammonia neurotoxicity. J Cell Biochem 2023; 124:606-618. [PMID: 36922709 DOI: 10.1002/jcb.30393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
We have recently reported that honokiol (HKL), by activating mitochondrial SIRT3, normalizes reactive oxygen species level and mitochondrial integrity in hippocampus of the moderate grade hepatic encephalopathy (MoHE) rat model of ammonia neurotoxicity. To delineate the mechanism by which HKL does so, the present study describes activity versus level of the deacetylated mitochondrial Mn-superoxide dismutase (MnSOD) and expression of MnSOD versus levels of its main transcription regulators, FoxO3a and PGC1α, in the hippocampus of the MoHE rats. MoHE in rat was developed by administration of 100 mg/kg bw thioacetamide i.p. for 10 days. The study parameters were compared between the control, the MoHE rats and the MoHE rats treated with HKL (10 mg/Kg b.w.) for 7 days. As compared to control, the hippocampus mitochondria from MoHE rats showed a significantly declined activity of MnSOD vs enhanced lipid peroxidation coinciding with the increased level of its acetylated form. The HKL treatment could, however, normalize all these parameters in those MoHE rats. Also, a significantly reduced expression of MnSOD in the hippocampus of the MoHE rats coincided with a similar decline in transcript level of Foxo3a and Pgc1α. This was consistent with the reduced level of immuno-stained Foxo3a and Pgc1α proteins in hippocampus DG, CA1 and CA3 regions of those MoHE rats. However, all these factors were observed to be restored back to their normal levels due to the treatment with HKL. As HKL is a specific activator of mitochondrial SIRT3, these findings suggest involvement of Sirt3 activation led deacetylation of MnSOD and upregulation of its transcription activators, FoxO3a and PGC1α, in restoring mitochondrial MnSOD level in the hippocampus of the MoHE rat model of ammonia neurotoxicity.
Collapse
Affiliation(s)
- Anamika
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anima Roy
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra K Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Supruniuk E, Żebrowska E, Maciejczyk M, Zalewska A, Chabowski A. Lipid peroxidation and sphingolipid alterations in the cerebral cortex and hypothalamus of rats fed a high-protein diet. Nutrition 2023; 107:111942. [PMID: 36621260 DOI: 10.1016/j.nut.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES High-protein diets (HPDs) are widely accepted to enhance satiety and energy expenditure and thus have become a popular strategy to lose weight and facilitate muscle protein synthesis. However, long-term high-protein consumption could be linked with metabolic and clinical problems such as renal and liver dysfunctions. This study verified the effects of 8-wk high-protein ingestion on lipid peroxidation and sphingolipid metabolism in the plasma, cerebral cortex, and hypothalamus in rats. METHODS Immunoenzymatic and spectrophotometric methods were applied to assess oxidation-reduction (redox) biomarkers and neutral sphingomyelinase activity, whereas gas-liquid chromatography and high-performance liquid chromatography were used to examine sphingolipid levels. RESULTS The vast majority of HPD-related alterations was restricted to the hypothalamus. Specifically, an increased rate of lipid peroxidation (increased lipid hydroperoxides, 8-isoprostanes, and thiobarbituric acid reactive substances) associated with ceramide accumulation via the activation of de novo synthesis (decreased sphinganine), salvage pathway (decreased sphingosine), and sphingomyelin hydrolysis (decreased sphingomyelin and increased neutral sphingomyelinase activity) was noted. CONCLUSIONS This study showed that HPD substantially affected hypothalamic metabolic pathways, which potentially alter cerebral output signals to the peripheral tissues.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland.
| | - Anna Zalewska
- Department of Restorative Dentistry, Medical University of Bialystok, Bialystok, Poland; Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
6
|
Huang P, Wu JJ, Zhang JW, Hou YQ, Zhu P, Yin R, Yu RB, Zhang Y, Yue M, Hou W. Genetic variants of IFIH1 and DHX58 affect the chronicity of hepatitis C in the Chinese Han population. PeerJ 2023; 11:e14740. [PMID: 36743960 PMCID: PMC9893905 DOI: 10.7717/peerj.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Hepatitis C remains a major public health problem in the world. The host immune system plays a key role in viral clearance. This study aimed to investigate the connection between retinoic acid-inducible gene I-like (RIG-I-like) receptor gene polymorphism and hepatitis C chronicity in the Chinese Han population. The current study genotyped three SNPs (IFIH1 rs10930046 and DHX58 rs2074158, rs2074160) to assess their association with the chronicity of hepatitis C virus (HCV) infection among 1,590 participants (590 spontaneous HCV clearance cases and 1,000 persistent infection patients). Our research shows that DHX58 rs2074158-G allele (dominant model: adjusted OR = 1.53, 95% CI [1.20-1.95], P = 0.001; additive model: adjusted OR = 1.50, 95% CI [1.27-1.78], P < 0.001) and IFIH1 rs10930046-C allele (additive model: adjusted OR = 1.26, 95% CI [1.07-1.49], P = 0.005) were associated with chronic hepatitis C (CHC). And the risk of CHC increased in people carrying more unfavorable genotypes (rs2074158-AG/GG or rs10930046-CC), with the chronic rates for genotypes number from zero to two in 60.69%, 57.33%, and 85.93%, respectively (adjusted OR = 3.64, 95% CI [2.18-6.08]; P < 0.001). Genetic polymorphism of IFIH1 and DHX58 may be related to CHC in the Chinese Han population. Furthermore, the risk of CHC increases as the number of unfavorable genotypes carried by the HCV-infected person increases. IFIH1 rs10930046, DHX58 rs2074158, age, ALT, and AST levels were all independent predictors of CHC.
Collapse
Affiliation(s)
- Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Jing Wu
- The Department of Environmental Health, Yangzhou Center for Disease Control and Prevention, Yang-zhou, China
| | - Jin-Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yu-Qing Hou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Zhu
- Department of Medical Affairs, Jiangsu Provincial People’s Hospital, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong-Bin Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Hou
- The State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Qi W, Ge Y, Wang X, Li Z, Li X, Wang N, He H, Luo X, Ma W, Chen L, Liu Y, Zhang T. Ameliorative Effect of Chitosan Oligosaccharides on Hepatic Encephalopathy by Reshaping Gut Microbiota and Gut-Liver Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13186-13199. [PMID: 36194761 DOI: 10.1021/acs.jafc.2c01330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study investigated the influence of chitosan oligosaccharides (COSs) on a thioacetamide-induced hepatic encephalopathy (HE) Wistar rat model. COS treatment statistically reduced the false neurotransmitters and blood ammonia in HE rats, along with the suppression of oxidative stress and inflammation. The disbalanced gut microbiota was detected in HE rats by 16S rDNA sequencing, but the abundance alterations of some intestinal bacteria at either the phylum or genus level were at least partly restored by COS treatment. According to metabolomics analysis of rat feces, six metabolism pathways with the greatest response to HE were screened, several of which were remarkably reversed by COS. The altered metabolites might serve as a bridge for the alleviated HE rats treated with COS and the enhanced intestinal bacterial structure. This study provides novel guidance to develop novel food or dietary supplements to improve HE diseases due to the potential beneficial effect of COS on gut-liver axis.
Collapse
Affiliation(s)
- Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yanyan Ge
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xinyue Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zihan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaoxue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hongpeng He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Liehuan Chen
- New Youlan Healthy Technology Co., Ltd., Guangzhou 510530, Guangdong, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
8
|
Méndez M, Fidalgo C, Arias JL, Arias N. Methylene blue and photobiomodulation recover cognitive impairment in hepatic encephalopathy through different effects on cytochrome c-oxidase. Behav Brain Res 2021; 403:113164. [PMID: 33549685 DOI: 10.1016/j.bbr.2021.113164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/02/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction plays a central role in hepatic encephalopathy (HE), due to changes in enzyme cytochrome c-oxidase (CCO), causing a decline in brain metabolism. We used an HE animal model and applied intracranial administration of methylene blue (MB) and transcranial photobiomodulation (PBM), both targeting CCO, to determine their differential effects on recovering cognition. Five groups of rats were used: sham-operated group + saline (SHAM + SAL, n = 6), hepatic encephalopathy + SAL (HE + SAL, n = 7), SHAM + methylene blue (SHAM + MB, n = 7), HE + MB (n = 7), HE + PBM (n = 7). PBM animals were exposed transcranially to 670 +/- 10 nm LED light at a dose of 9 J/cm2 once a day for 7 days, and the MB and SAL groups were injected with 2.2 μg/0.5 μL in the accumbens. Cognitive dysfunction was evaluated on a striatal stimulus-response task using the Morris water maze. Our results showed cognitive improvement in the HE group when treated with MB. This improvement was accompanied by a decrease in CCO activity in the prefrontal cortex, dorsal striatum, and dorsal hippocampus. When comparing MB and PBM, we found that, although both treatments effectively improved the HE-memory deficit, there was a differential effect on CCO. A general decrease in CCO activity was found in the prefrontal and entorhinal cortices, dorsal striatum, and hippocampus when PBM, compared to MB, was applied. Our results suggest that mitochondrial dysfunction and brain metabolic decline in HE might involve CCO alteration and can be improved by administering MB and PBM.
Collapse
Affiliation(s)
- Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Camino Fidalgo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; Departamento de Psicología y Sociología, IIS Aragón, Universidad de Zaragoza, Ciudad Escolar s/n, Teruel, 44003, Spain
| | - Jorge L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|