1
|
Martins SG, Ribeiro V, Melo C, Paulino-Cavaco C, Antonini D, Dayalan Naidu S, Murtinheira F, Fonseca I, Saget B, Pita M, Fernandes DR, Gameiro Dos Santos P, Rodrigues G, Zilhão R, Herrera F, Dinkova-Kostova AT, Carlos AR, Thorsteinsdóttir S. Laminin-α2 chain deficiency in skeletal muscle causes dysregulation of multiple cellular mechanisms. Life Sci Alliance 2024; 7:e202402829. [PMID: 39379105 PMCID: PMC11463332 DOI: 10.26508/lsa.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
LAMA2, coding for the laminin-α2 chain, is a crucial ECM component, particularly abundant in skeletal muscle. Mutations in LAMA2 trigger the often-lethal LAMA2-congenital muscular dystrophy (LAMA2-CMD). Various phenotypes have been linked to LAMA2-CMD; nevertheless, the precise mechanisms that malfunction during disease onset in utero remain unknown. We generated Lama2-deficient C2C12 cells and found that Lama2-deficient myoblasts display proliferation, differentiation, and fusion defects, DNA damage, oxidative stress, and mitochondrial dysfunction. Moreover, fetal myoblasts isolated from the dy W mouse model of LAMA2-CMD display impaired differentiation and fusion in vitro. We also showed that disease onset during fetal development is characterized by a significant down-regulation of gene expression in muscle fibers, causing pronounced effects on cytoskeletal organization, muscle differentiation, and altered DNA repair and oxidative stress responses. Together, our findings provide unique insights into the critical importance of the laminin-α2 chain for muscle differentiation and muscle cell homeostasis.
Collapse
Affiliation(s)
- Susana G Martins
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa Ribeiro
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Melo
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Paulino-Cavaco
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Fernanda Murtinheira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fonseca
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Bérénice Saget
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Pita
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo R Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Gameiro Dos Santos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriela Rodrigues
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Zilhão
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Herrera
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ana Rita Carlos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Liu Y, Tan D, Ma K, Luo H, Mao J, Luo J, Shen Q, Xu L, Yang S, Ge L, Guo Y, Zhang H, Xiong H. Lama1 upregulation prolongs the lifespan of the dy H/dy H mouse model of LAMA2-related congenital muscular dystrophy. J Genet Genomics 2024; 51:1066-1078. [PMID: 38777118 DOI: 10.1016/j.jgg.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
LAMA2-related congenital muscular dystrophy (LAMA2-CMD), characterized by laminin-α2 deficiency, is debilitating and ultimately fatal. To date, no effective therapy has been clinically available. Laminin-α1, which shares significant similarities with laminin-α2, has been proven as a viable compensatory modifier. To evaluate its clinical applicability, we establish a Lama2 exon-3-deletion mouse model (dyH/dyH). The dyH/dyH mice exhibit early lethality and typical LAMA2-CMD phenotypes, allowing the evaluation of various endpoints. In dyH/dyH mice treated with synergistic activation mediator-based CRISPRa-mediated Lama1 upregulation, a nearly doubled median survival is observed, as well as improvements in weight and grip. Significant therapeutical effects are revealed by MRI, serum biochemical indices, and muscle pathology studies. Treating LAMA2-CMD with LAMA1 upregulation is feasible, and early intervention can alleviate symptoms and extend lifespan. Additionally, we reveal the limitations of LAMA1 upregulation, including high-dose mortality and non-sustained expression, which require further optimization in future studies.
Collapse
Affiliation(s)
- Yidan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dandan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kaiyue Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huaxia Luo
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China
| | - Jingping Mao
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jihang Luo
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qiang Shen
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, Peking University, Beijing 100191, China
| | - Shiqi Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yuxuan Guo
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hong Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
3
|
Guo Y, Zhang M, Luo Y, Li Y, Xu Y, Wang N. Comprehensive analysis of LMNB2 in pan-cancer and identification of its biological role in sarcoma. Aging (Albany NY) 2024; 17:203-216. [PMID: 39774004 PMCID: PMC11810055 DOI: 10.18632/aging.205962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2025]
Abstract
BACKGROUNDS Sarcoma (SARC) is a mesenchymal tumor which often responds poorly to systemic therapy. It is therefore important to look for possible biological markers that could tell the prognosis and the progression of SARC. METHODS A combined evaluation of the Cancer Genome Atlas (TCGA) and genotypic tissue expression (GTEx) portal was used to analyzeLMNB2 expression level in different types of cancer. Kaplan-Meier survival analysis was performed to examine LMNB2 predictive value in over-all survival rate and disease-free survival rate. The association among LMNB2 expression level and immune cell infiltration, microsatellite instability (MSI) and tumor mutational burden (TMB) were analyzed. GO and KEGG enrichment analysis were performed to predicate LMNB2 biological functions. The biological function of LMNB2 was estimated by MTT and flow cytometry assay. Additionally, western blot assay was used to examine protein expression levels. RESULTS Increased LMNB2 expression was related with worsened cancer type-dependent survival. A relation between LMNB2 expression levels and immune cell infiltration was found. GO and KEGG enrichment analysis indicated that LMNB2 was involved in a series of pathways. Biology function assays revealed that down-regulation of LMNB2 impaired proliferation and cell cycle distribution. At the mechanical level, LMNB2 acts as a regulator of cyclinD1 and cyclinE1. CONCLUSIONS Altogether, these data suggest that LMNB2 may serve as a tumor promoter and could be a possible target for cancer therapy.
Collapse
Affiliation(s)
- Yonghui Guo
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, Guangdong Province, China
| | - Min Zhang
- GuangDong Second Province General Hospital, Neurosurgery Department (MH), Guangzhou, Guangdong Province, China
| | - Yingrui Luo
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yingshi Li
- Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanxia Xu
- Department of Radiation Oncology, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong Province, China
| | - Nisha Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Zarén P, Gawlik KI. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice. Sci Rep 2024; 14:14757. [PMID: 38926599 PMCID: PMC11208443 DOI: 10.1038/s41598-024-65473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, β-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7β1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.
Collapse
Affiliation(s)
- Paula Zarén
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden.
| |
Collapse
|
5
|
Saito Y, Ishiyama A, Saito Y, Komaki H, Sasaki M. Myelin abnormalities in merosin-deficient congenital muscular dystrophy. Muscle Nerve 2024; 69:55-63. [PMID: 37933889 DOI: 10.1002/mus.28002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION/AIMS Merosin is a protein complex located in the basement membrane of skeletal muscles and laminin α2-containing regions of the central and peripheral nervous systems. However, because of the prominence of muscle-related symptoms, peripheral neuropathy associated with merosin-deficient congenital muscular dystrophy type 1A (MDC1A) has received little clinical attention. This study aimed to present pathological changes in intramuscular nerves of three patients with MDC1A and discuss their relationship with electrophysiological findings to provide new evidence of peripheral nerve involvement in MDC1A. METHODS MDC1A was confirmed by clinical features, muscle biopsy, and genetic testing for variants in LAMA2. To clarify peripheral nerve involvement, we statistically evaluated electrophysiological and muscle pathology findings of intramuscular nerves. These findings were compared with those of age-matched boys with Duchenne muscular dystrophy (DMD) as controls with normal nerves. Nerve conduction studies (NCS) were performed before biopsy. Biopsied intramuscular nerves were examined with electron microscopy using g-ratio, which is the ratio of axon diameter to myelinated fiber diameter. RESULTS The myelin sheaths were significantly thinner in MDC1A patients than in age-matched DMD patients, with a mean g-ratio of 0.76 ± 0.07 in MDC1A patients and 0.65 ± 0.14 in DMD patients (p < .0001). No neuropathic changes were identified in muscle pathology. Low compound muscle action potential amplitudes, positive sharp waves and fibrillation potentials, and low-amplitude motor unit potentials with increased polyphasia indicated myopathic changes; no neurogenic changes were seen. DISCUSSION We postulate that the thin myelin associated with MDC1A reflects the role of merosin in myelin maturation.
Collapse
Affiliation(s)
- Yoshihiko Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of Neuromuscular Research, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of Neuromuscular Research, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Yuko Saito
- Department of Clinical Laboratory, National Center Hospital, NCNP, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
6
|
Rawls A, Diviak BK, Smith CI, Severson GW, Acosta SA, Wilson-Rawls J. Pharmacotherapeutic Approaches to Treatment of Muscular Dystrophies. Biomolecules 2023; 13:1536. [PMID: 37892218 PMCID: PMC10605463 DOI: 10.3390/biom13101536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic muscle-wasting disorders that are subdivided based on the region of the body impacted by muscle weakness as well as the functional activity of the underlying genetic mutations. A common feature of the pathophysiology of muscular dystrophies is chronic inflammation associated with the replacement of muscle mass with fibrotic scarring. With the progression of these disorders, many patients suffer cardiomyopathies with fibrosis of the cardiac tissue. Anti-inflammatory glucocorticoids represent the standard of care for Duchenne muscular dystrophy, the most common muscular dystrophy worldwide; however, long-term exposure to glucocorticoids results in highly adverse side effects, limiting their use. Thus, it is important to develop new pharmacotherapeutic approaches to limit inflammation and fibrosis to reduce muscle damage and promote repair. Here, we examine the pathophysiology, genetic background, and emerging therapeutic strategies for muscular dystrophies.
Collapse
Affiliation(s)
- Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| | - Bridget K. Diviak
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Cameron I. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Grant W. Severson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Sofia A. Acosta
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| |
Collapse
|
7
|
Oliveira-Santos A, Dagda M, Wittmann J, Smalley R, Burkin DJ. Vemurafenib improves muscle histopathology in a mouse model of LAMA2-related congenital muscular dystrophy. Dis Model Mech 2023; 16:dmm049916. [PMID: 37021539 PMCID: PMC10184677 DOI: 10.1242/dmm.049916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a neuromuscular disease affecting around 1-9 in 1,000,000 children. LAMA2-CMD is caused by mutations in the LAMA2 gene resulting in the loss of laminin-211/221 heterotrimers in skeletal muscle. LAMA2-CMD patients exhibit severe hypotonia and progressive muscle weakness. Currently, there is no effective treatment for LAMA2-CMD and patients die prematurely. The loss of laminin-α2 results in muscle degeneration, defective muscle repair and dysregulation of multiple signaling pathways. Signaling pathways that regulate muscle metabolism, survival and fibrosis have been shown to be dysregulated in LAMA2-CMD. As vemurafenib is a US Food and Drug Administration (FDA)-approved serine/threonine kinase inhibitor, we investigated whether vemurafenib could restore some of the serine/threonine kinase-related signaling pathways and prevent disease progression in the dyW-/- mouse model of LAMA2-CMD. Our results show that vemurafenib reduced muscle fibrosis, increased myofiber size and reduced the percentage of fibers with centrally located nuclei in dyW-/- mouse hindlimbs. These studies show that treatment with vemurafenib restored the TGF-β/SMAD3 and mTORC1/p70S6K signaling pathways in skeletal muscle. Together, our results indicate that vemurafenib partially improves histopathology but does not improve muscle function in a mouse model of LAMA2-CMD.
Collapse
Affiliation(s)
- Ariany Oliveira-Santos
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Jennifer Wittmann
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Robert Smalley
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Dean J. Burkin
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| |
Collapse
|
8
|
McKee KK, Yurchenco PD. Dual transgene amelioration of Lama2-null muscular dystrophy. Matrix Biol 2023; 118:1-15. [PMID: 36878377 PMCID: PMC10771811 DOI: 10.1016/j.matbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Null mutations of the Lama2-gene cause a severe congenital muscular dystrophy and associated neuropathy. In the absence of laminin-α2 (Lmα2) there is a compensatory replacement by Lmα4, a subunit that lacks the polymerization and α-dystroglycan (αDG)-binding properties of Lmα2. The dystrophic phenotype in the dy3K/dy3K Lama2-/- mouse were evaluated with transgenes driving expression of two synthetic laminin-binding linker proteins. Transgenic muscle-specific expression of αLNNd, a chimeric protein that enables α4-laminin polymerization, and miniagrin (mag), a protein that increases laminin binding to the receptor αDG, separately improved median mouse survival two-fold. The double transgenes (DT) improved mean survival three-fold with increases in overall body weight, muscle size, and grip strength, but, given absence of neuronal expression, did not prevent hindlimb paresis. Muscle improvements included increased myofiber size and number and reduced fibrosis. Myofiber hypertrophy with increased mTOR and Akt phosphorylation were characteristics of mag-dy3K/dy3K and DT-dy3K/dy3K muscle. Elevations of matrix-bound α4-, β1 and γ1 laminin subunits were detected in muscle extracts and immunostained sections in response to DT expression. Collectively, these findings reveal a complimentary polymerization and αDG-binding benefit to Lama2-/- mouse muscle largely mediated through modified laminin-411.
Collapse
Affiliation(s)
- Karen K McKee
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Peter D Yurchenco
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
9
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
10
|
Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison DDW, Bentzinger CF. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol 2022; 10:1056523. [PMID: 36523505 PMCID: PMC9745096 DOI: 10.3389/fcell.2022.1056523] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.
Collapse
Affiliation(s)
- Svenja C. Schüler
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - DDW Cornelison
- Division of Biological Sciences Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - C. Florian Bentzinger
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
11
|
Smith SJ, Fabian L, Sheikh A, Noche R, Cui X, Moore SA, Dowling JJ. Lysosomes and the pathogenesis of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2022; 31:733-747. [PMID: 34568901 PMCID: PMC9989739 DOI: 10.1093/hmg/ddab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Family Medicine, University of Calgary, Calgary T2R 0X7, Alberta
| | - Lacramioara Fabian
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Adeel Sheikh
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ramil Noche
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiucheng Cui
- Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Moore
- Department of Pathology, University of Iowa Medical Center, Iowa City, IA, USA
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
12
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
13
|
Christen M, Indzhova V, Guo LT, Jagannathan V, Leeb T, Shelton GD, Brocal J. LAMA2 Nonsense Variant in an Italian Greyhound with Congenital Muscular Dystrophy. Genes (Basel) 2021; 12:1823. [PMID: 34828429 PMCID: PMC8618982 DOI: 10.3390/genes12111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
A 4-month-old, male Italian Greyhound with clinical signs of a neuromuscular disease was investigated. The affected dog presented with an abnormal short-strided gait, generalized muscle atrophy, and poor growth since 2-months of age. Serum biochemistry revealed a marked elevation in creatine kinase activity. Electrodiagnostic testing supported a myopathy. Histopathology of muscle biopsies confirmed a dystrophic phenotype with excessive variability in myofiber size, degenerating fibers, and endomysial fibrosis. A heritable form of congenital muscular dystrophy (CMD) was suspected, and a genetic analysis initiated. We sequenced the genome of the affected dog and compared the data to that of 795 control genomes. This search revealed a private homozygous nonsense variant in LAMA2, XM_022419950.1:c.3285G>A, predicted to truncate 65% of the open reading frame of the wild type laminin α2 protein, XP_022275658.1:p.(Trp1095*). Immunofluorescent staining performed on muscle cryosections from the affected dog confirmed the complete absence of laminin α2 in skeletal muscle. LAMA2 loss of function variants were shown to cause severe laminin α2-related CMD in humans, mouse models, and in one previously described dog. Our data together with current knowledge on other species suggest the LAMA2 nonsense variant as cause for the CMD phenotype in the investigated dog.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - Victoria Indzhova
- Neurology-Neurosurgery Service, Willows Veterinary Centre and Referral Service, Solihull B90 4NH, West Midlands, UK;
| | - Ling T. Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA; (L.T.G.); (G.D.S.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - G. Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA; (L.T.G.); (G.D.S.)
| | - Josep Brocal
- Department of Neurology and Neurosurgery, Anderson Moores Veterinary Specialists, Winchester SO21 2LL, Hampshire, UK;
| |
Collapse
|
14
|
Quijano-Roy S, Haberlova J, Castiglioni C, Vissing J, Munell F, Rivier F, Stojkovic T, Malfatti E, Gómez García de la Banda M, Tasca G, Costa Comellas L, Benezit A, Amthor H, Dabaj I, Gontijo Camelo C, Laforêt P, Rendu J, Romero NB, Cavassa E, Fattori F, Beroud C, Zídková J, Leboucq N, Løkken N, Sanchez-Montañez Á, Ortega X, Kynčl M, Metay C, Gómez-Andrés D, Carlier RY. Diagnostic interest of whole-body MRI in early- and late-onset LAMA2 muscular dystrophies: a large international cohort. J Neurol 2021; 269:2414-2429. [PMID: 34559299 DOI: 10.1007/s00415-021-10806-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND LAMA2-related muscular dystrophy (LAMA2-RD) encompasses a group of recessive muscular dystrophies caused by mutations in the LAMA2 gene, which codes for the alpha-2 chain of laminin-211 (merosin). Diagnosis is straightforward in the classic congenital presentation with no ambulation and complete merosin deficiency in muscle biopsy, but is far more difficult in milder ambulant individuals with partial merosin deficiency. OBJECTIVE To investigate the diagnostic utility of muscle imaging in LAMA2-RD using whole-body magnetic resonance imaging (WBMRI). RESULTS 27 patients (2-62 years, 21-80% with acquisition of walking ability and 6 never ambulant) were included in an international collaborative study. All carried two pathogenic mutations, mostly private missense changes. An intronic variant (c.909 + 7A > G) was identified in all the Chilean cases. Three patients (two ambulant) showed intellectual disability, epilepsy, and brain structural abnormalities. WBMRI T1w sequences or T2 fat-saturated images (Dixon) revealed abnormal muscle fat replacement predominantly in subscapularis, lumbar paraspinals, gluteus minimus and medius, posterior thigh (adductor magnus, biceps femoris, hamstrings) and soleus. This involvement pattern was consistent for both ambulant and non-ambulant patients. The degree of replacement was predominantly correlated to the disease duration, rather than to the onset or the clinical severity. A "COL6-like sandwich sign" was observed in several muscles in ambulant adults, but different involvement of subscapularis, gluteus minimus, and medius changes allowed distinguishing LAMA2-RD from collagenopathies. The thigh muscles seem to be the best ones to assess disease progression. CONCLUSION WBMRI in LAMA2-RD shows a homogeneous pattern of brain and muscle imaging, representing a supportive diagnostic tool.
Collapse
Affiliation(s)
- Susana Quijano-Roy
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- Université de Versailles, U1179 INSERM-UVSQ, Versailles, France
| | - Jana Haberlova
- Department of Paediatric Neurology, Motol University Hospital, Prague, Czech Republic
| | - Claudia Castiglioni
- Pediatric Neurology Department, Clinica Las Condes, Santiago de Chile, Chile
- Instituto Nacional de Rehabilitación Pedro Aguirre Cerda, Santiago de Chile, Chile
| | - John Vissing
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francina Munell
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035
| | - François Rivier
- Department of Pediatric Neurology and Reference Center for Neuromuscular Diseases AOC, CHU Montpellier, Montpellier, France
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Tanya Stojkovic
- APHP, Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, Institute of Myology, Paris, France
| | - Edoardo Malfatti
- Univ Paris Est UPE, INSERM, U955 IMRB, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Hôpital Henri Mondor, Créteil, France
| | - Marta Gómez García de la Banda
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Giorgio Tasca
- Unità Operativa Complessa Di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Laura Costa Comellas
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035
| | - Audrey Benezit
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Helge Amthor
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- Université de Versailles, U1179 INSERM-UVSQ, Versailles, France
| | - Ivana Dabaj
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- CHU de Rouen, Service de Néonatologie, Réanimation pédiatrique, Neuropédiatrie et Éducation Fonctionnelle de L'enfant, INSERM U 1245, ED497, 76000, Rouen, France
| | - Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Pascal Laforêt
- Nord/Est/Ile de France Neuromuscular Reference Center, PHENIX FHU, Hôpital Raymond-Poincaré, AP-HP. INSERM U1179, Garches, France
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, GIN, Grenoble, France
| | - Norma B Romero
- Sorbonne Université, Myology Institute, Neuromuscular Morphology Unit, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France
- Centre de Référence de Pathologie Neuromusculaire Paris-Est, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eliana Cavassa
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Fabiana Fattori
- Unit for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Christophe Beroud
- APHM, Laboratoire de Génétique Moléculaire, Hôpital TIMONE Enfants; Aix Marseille University, INSERM, MMG, Marseille, France
| | - Jana Zídková
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | | | - Nicoline Løkken
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ángel Sanchez-Montañez
- Pediatric Neuroradiology, Radiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ximena Ortega
- Diagnostic Imaging Service, Clinica Las Condes, Santiago de Chile, Chile
| | - Martin Kynčl
- Department of Radiology, Motol University Hospital, Prague, Czech Republic
| | - Corinne Metay
- AP-HP, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, GH Pitié Salpêtrière, Paris, France
- Sorbonne Université - Inserm UMRS974, Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Paris, France
| | - David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035.
| | - Robert Y Carlier
- APHP, GH Université Paris-Saclay, DMU Smart Imaging, Medical Imaging Department, Raymond Poincaré Teaching Hospital, Garches, France
| |
Collapse
|
15
|
Abstract
Background Vascular calcification is a closely linked to cardiovascular diseases, such as atherosclerosis, chronic kidney disease, diabetes, hypertension and aging. The extent of vascular calcification is closely correlate with adverse clinical events and cardiovascular all-cause mortality. The role of autophagy in vascular calcification is complex with many mechanistic unknowns.
Methods In this review, we analyze the current known mechanisms of autophagy in vascular calcification and discuss the theoretical advantages of targeting autophagy as an intervention against vascular calcification. Results Here we summarize the functional link between vascular calcification and autophagy in both animal models of and human cardiovascular disease. Firstly, autophagy can reduce calcification by inhibiting the osteogenic differentiation of VSMCs related to ANCR, ERα, β-catenin, HIF-1a/PDK4, p62, miR-30b, BECN1, mTOR, SOX9, GHSR/ERK, and AMPK signaling. Conversely, autophagy can induce osteoblast differentiation and calcification as mediated by CREB, degradation of elastin, and lncRNA H19 and DUSP5 mediated ERK signaling. Secondly, autophagy also links apoptosis and vascular calcification through AMPK/mTOR/ULK1, Wnt/β-catenin and GAS6/AXL synthesis, as apoptotic cells become the nidus for calcium-phosphate crystal deposition. The failure of mitophagy can activate Drp1, BNIP3, and NR4A1/DNA‑PKcs/p53 mediated intrinsic apoptotic pathways, which have been closely linked to the formation of vascular calcification. Additionally, autophagy also plays a role in osteogenesis by regulating vascular calcification, which in turn regulates expression of proteins related to bone development, such as osteocalcin, osteonectin, etc. and regulated by mTOR, EphrinB2 and RhoA. Furthermore, autophagy also promotes vitamin K2-induced MC3T3 E1 osteoblast differentiation and FGFR4/FGF18- and JNK/complex VPS34–beclin-1-related bone mineralization via vascular calcification. Conclusion The interaction between autophagy and vascular calcification are complicated, with their interaction affected by the disease process, anatomical location, and the surrounding microenvironment. Autophagy activation in existent cellular damage is considered protective, while defective autophagy in normal cells result in apoptotic activation. Identifying and maintaining cells at the delicate line between these two states may hold the key to reducing vascular calcification, in which autophagy associated clinical strategy could be developed.
Collapse
|
16
|
Salvati A, Bonaventura E, Sesso G, Pasquariello R, Sicca F. Epilepsy in LAMA2-related muscular dystrophy: A systematic review of the literature. Seizure 2021; 91:425-436. [PMID: 34325301 DOI: 10.1016/j.seizure.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a common, often severe, feature of LAMA2-related muscular dystrophy (LAMA2-RD) and could represent its onset and main manifestation, even in the absence of overt muscle involvement. To date, there is no systematic characterization of epilepsy in LAMA2-RD, and its impact on neurodevelopment and on the clinical course remains poorly established. In view of this knowledge gap, we conducted a systematic review of the literature and, as an illustrative example, reported the clinical case of a boy with late-onset LAMA2-related limb-girdle muscular dystrophy presenting with severe epilepsy. Our analyses of the literature data revealed a mean age at first seizure of 8 years, with significant differences between early- versus late-onset disease (5.78 ± 4.11 and 9.00 ± 2.65 years, respectively; p = 0.0007), and complete versus partial merosin deficiency (5.33 ± 3.70 and 10.36 ± 5.49 years, respectively; p = 0.0176). A generalized onset was the most common seizure presentation, regardless of merosin expression levels or the timing of muscular distrophy onset. Cortical malformations were not significantly associated with an earlier epilepsy onset, and were found to be quasi-significantly associated with a greater incidence of focal, or focal and generalized, onset seizures. No clear conclusions could be reached on the electrophysiological and neurodevelopmental features of the disorder, or on the relative efficacy of anti-epileptic treatments; further research on these aspects is needed. This systematic review helps to show that epilepsy in LAMA2-RD may be more than an ancillary manifestation of the disease, but rather one of its core features. A targeted and prompt electroencephalographic and epilepsy assessment, in addition to the specific neuromuscular workup, is therefore mandatory in early clinical management to pursue the best possible outcome for affected children.
Collapse
Affiliation(s)
- Andrea Salvati
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Bonaventura
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Sesso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rossella Pasquariello
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy
| | - Federico Sicca
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, Pisa, Italy.
| |
Collapse
|
17
|
Fabian L, Dowling JJ. Zebrafish Models of LAMA2-Related Congenital Muscular Dystrophy (MDC1A). Front Mol Neurosci 2020; 13:122. [PMID: 32742259 PMCID: PMC7364686 DOI: 10.3389/fnmol.2020.00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also referred to as merosin deficient CMD (MDC1A), is a severe neonatal onset muscle disease caused by recessive mutations in the LAMA2 gene. LAMA2 encodes laminin α2, a subunit of the extracellular matrix (ECM) oligomer laminin 211. There are currently no treatments for MDC1A, and there is an incomplete understanding of disease pathogenesis. Zebrafish, due to their high degree of genetic conservation with humans, large clutch sizes, rapid development, and optical clarity, have emerged as an excellent model system for studying rare Mendelian diseases. They are particularly suitable as a model for muscular dystrophy because they contain at least one orthologue to all major human MD genes, have muscle that is similar to human muscle in structure and function, and manifest obvious and easily measured MD related phenotypes. In this review article, we present the existing zebrafish models of MDC1A, and discuss their contribution to the understanding of MDC1A pathomechanisms and therapy development.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada.,Departments of Pediatrics and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Arreguin AJ, Colognato H. Brain Dysfunction in LAMA2-Related Congenital Muscular Dystrophy: Lessons From Human Case Reports and Mouse Models. Front Mol Neurosci 2020; 13:118. [PMID: 32792907 PMCID: PMC7390928 DOI: 10.3389/fnmol.2020.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Laminin α2 gene (LAMA2)-related Congenital Muscular Dystrophy (CMD) was distinguished by a defining central nervous system (CNS) abnormality—aberrant white matter signals by MRI—when first described in the 1990s. In the past 25 years, researchers and clinicians have expanded our knowledge of brain involvement in LAMA2-related CMD, also known as Congenital Muscular Dystrophy Type 1A (MDC1A). Neurological changes in MDC1A can be structural, including lissencephaly and agyria, as well as functional, including epilepsy and intellectual disability. Mouse models of MDC1A include both spontaneous and targeted LAMA2 mutations and range from a partial loss of LAMA2 function (e.g., dy2J/dy2J), to a complete loss of LAMA2 expression (dy3K/dy3K). Diverse cellular and molecular changes have been reported in the brains of MDC1A mouse models, including blood-brain barrier dysfunction, altered neuro- and gliogenesis, changes in synaptic plasticity, and decreased myelination, providing mechanistic insight into potential neurological dysfunction in MDC1A. In this review article, we discuss selected studies that illustrate the potential scope and complexity of disturbances in brain development in MDC1A, and as well as highlight mechanistic insights that are emerging from mouse models.
Collapse
Affiliation(s)
- Andrea J Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|