1
|
Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, Tiamiyu Z, Awaji AA, Idowu N, Busayo BR, Mehmood Q, Onifade IA, Fakorede S, Akintola AA. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12:100032. [PMID: 39925443 PMCID: PMC11803229 DOI: 10.1016/j.gmg.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in the regulation of gene expression and maintaining genetic stability. Their interactions with RNA molecules govern critical processes such as mRNA splicing, stability, localization, and translation, which are essential for proper cellular function. These proteins interact with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains are found within the coding sequences (intron and exon domains), 5' untranslated regions (5'UTR) and 3' untranslated regions (3'UTR). Dysregulation of RBPs can lead to genomic instability, contributing to various pathologies, including cancer neurodegenerative diseases, and metabolic disorders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, highlighting their involvement in maintaining genomic integrity through modulation of RNA processing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current literature, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their promise as targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Shaibu Nasiru
- Department of Research and Development, Healthy Africans Platform, Ibadan, Nigeria
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | | | - Sumana Nefishatu
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | - Abdullahi Idowu
- Department of Biological Sciences, Purdue University Fort Wayne, USA
| | - Zainab Tiamiyu
- Department of Biochemistry and Cancer Biology, Medical College of Georgia, Augusta University, USA
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - Qasim Mehmood
- Shifa Clinical Research Center, Shifa International Hospital, Islamabad, Pakistan
| | - Isreal Ayobami Onifade
- Department of Division of Family Health, Health Research Incorporated, New York State Department of Health, USA
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashraf Akintayo Akintola
- Department of Biology Education, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Ojeda-Rodriguez A, Torres-Peña JD, Arenas-de Larriva AP, Rangel-Zuñiga OA, Podadera-Herreros A, Boughanem H, G-García ME, López-Moreno A, Katsiki N, Luque RM, Perez-Martinez P, Delgado-Lista J, Yubero-Serrano EM, Lopez-Miranda J. Differences in splicing factors may predict type 2 diabetes remission in the CORDIOPREV study. iScience 2025; 28:111527. [PMID: 39811651 PMCID: PMC11731613 DOI: 10.1016/j.isci.2024.111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Alternative splicing is a post-transcriptional process resulting in multiple protein isoforms from a single gene. Abnormal splicing may lead to metabolic diseases, including type 2 diabetes mellitus (T2DM). To identify the splicing factor expression that predicts T2DM remission in coronary heart disease (CHD) patients, we identified newly diagnosed T2DM at baseline (n = 190) from the CORDIOPREV study. Patients were classified as Responders (T2DM remission during 5 years without antidiabetic drugs) or non-Responders. Baseline dysregulation in 5 splicing factors (MBNL1, RBM5, hnRNP G/RBMX, CD44, NT5E) distinguished Responders from non-Responders. Adding these factors to clinical variables [AUC = 0.67], insulin resistance, and beta-cell indexes [AUC = 0.76], improved T2DM remission prediction [AUC = 0.80]. Cox regression analysis showed those with higher remission scores had a 2.63-fold increased remission probability. To conclude, a set of splicing factors that contribute to predicting T2DM remission in patients with CHD has been identified. Further research is needed to elucidate these findings' clinical relevance.
Collapse
Affiliation(s)
- Ana Ojeda-Rodriguez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Pablo Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oriol Alberto Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Podadera-Herreros
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Hatim Boughanem
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel E. G-García
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Alejandro López-Moreno
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus, Greece
| | - Raul M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Food and Health, Instituto de La Grasa, Spanish National Research Council (CSIC), 41013 Seville, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Department of Medical and Surgical Science, University of Cordoba, 14004 Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, S/n, 14004 Cordoba, Spain
- CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Snyder K, Dixon CE, Henchir J, Gorse K, Vagni VA, Janesko-Feldman K, Kochanek PM, Jackson TC. Gene knockout of RNA binding motif 5 in the brain alters RIMS2 protein homeostasis in the cerebellum and Hippocampus and exacerbates behavioral deficits after a TBI in mice. Exp Neurol 2024; 374:114690. [PMID: 38218585 PMCID: PMC11178365 DOI: 10.1016/j.expneurol.2024.114690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
RNA binding motif 5 (RBM5) is a tumor suppressor in cancer but its role in the brain is unclear. We used conditional gene knockout (KO) mice to test if RBM5 inhibition in the brain affects chronic cortical brain tissue survival or function after a controlled cortical impact (CCI) traumatic brain injury (TBI). RBM5 KO decreased baseline contralateral hemispheric volume (p < 0.0001) and exacerbated ipsilateral tissue loss at 21 d after CCI in male mice vs. wild type (WT) (p = 0.0019). CCI injury, but not RBM5 KO, impaired beam balance performance (0-5d post-injury) and swim speed on the Morris Water Maze (MWM) (19-20d) (p < 0.0001). RBM5 KO was associated with mild learning impairment in female mice (p = 0.0426), reflected as a modest increase in escape latency early in training (14-18d post-injury). However, KO did not affect spatial memory at 19d post-injury in male or in female mice but it was impaired by CCI in females (p = 0.0061). RBM5 KO was associated with impaired visual function in male mice on the visible platform test at 20d post-injury (p = 0.0256). To explore signaling disturbances in KOs related to behavior, we first cross-referenced known brain-specific RBM5-regulated gene targets with genes in the curated RetNet database that impact vision. We then performed a secondary literature search on RBM5-regulated genes with a putative role in hippocampal function. Regulating synaptic membrane exocytosis 2 (RIMS) 2 was identified as a gene of interest because it regulates both vision and hippocampal function. Immunoprecipitation and western blot confirmed protein expression of a novel ~170 kDa RIMS2 variant in the cerebellum, and in the hippocampus, it was significantly increased in KO vs WT (p < 0.0001), and in a sex-dependent manner (p = 0.0390). Furthermore, male KOs had decreased total canonical RIMS2 levels in the cerebellum (p = 0.0027) and hippocampus (p < 0.0001), whereas female KOs had increased total RIMS1 levels in the cerebellum (p = 0.0389). In summary, RBM5 modulates brain function in mammals. Future work is needed to test if RBM5 dependent regulation of RIMS2 splicing effects vision and cognition, and to verify potential sex differences on behavior in a larger cohort of mice.
Collapse
Affiliation(s)
- Kara Snyder
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| | - C Edward Dixon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Jeremy Henchir
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Kiersten Gorse
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| | - Vincent A Vagni
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6(th) floor, Pittsburgh, PA 15224, United States of America.
| | - Travis C Jackson
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL 33602, United States of America; University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL 33612, United States of America.
| |
Collapse
|
4
|
Zhang M, Hyle J, Chen X, Xin Y, Jin Y, Zhang J, Yang X, Chen X, Wright S, Liu Z, Rosikiewicz W, Xu B, He L, Liu H, Ping N, Wu D, Wen F, Li C, Xu P. RNA-binding protein RBM5 plays an essential role in acute myeloid leukemia by activating the oncogenic protein HOXA9. Genome Biol 2024; 25:16. [PMID: 38216972 PMCID: PMC10785552 DOI: 10.1186/s13059-023-03149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND The oncogenic protein HOXA9 plays a critical role in leukemia transformation and maintenance, and its aberrant expression is a hallmark of most aggressive acute leukemia. Although inhibiting the upstream regulators of HOXA9 has been proven as a significant therapeutic intervention, the comprehensive regulation network controlling HOXA9 expression in leukemia has not been systematically investigated. RESULTS Here, we perform genome-wide CRISPR/Cas9 screening in the HOXA9-driven reporter acute leukemia cells. We identify a poorly characterized RNA-binding protein, RBM5, as the top candidate gene required to maintain leukemia cell fitness. RBM5 is highly overexpressed in acute myeloid leukemia (AML) patients compared to healthy individuals. RBM5 loss triggered by CRISPR knockout and shRNA knockdown significantly impairs leukemia maintenance in vitro and in vivo. Through domain CRISPR screening, we reveal that RBM5 functions through a noncanonical transcriptional regulation circuitry rather than RNA splicing, such an effect depending on DNA-binding domains. By integrative analysis and functional assays, we identify HOXA9 as the downstream target of RBM5. Ectopic expression of HOXA9 rescues impaired leukemia cell proliferation upon RBM5 loss. Importantly, acute protein degradation of RBM5 through auxin-inducible degron system immediately reduces HOXA9 transcription. CONCLUSIONS We identify RBM5 as a new upstream regulator of HOXA9 and reveal its essential role in controlling the survival of AML. These functional and molecular mechanisms further support RBM5 as a promising therapeutic target for myeloid leukemia treatment.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Judith Hyle
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xiaowen Chen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen Institute of Pediatrics, 7019 Yi Tian Road, Shenzhen, 518038, China
| | - Ye Xin
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yingcai Jin
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianxiang Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xue Yang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xinfeng Chen
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zhenling Liu
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Liusheng He
- Core Facility of Flow Cytometry, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hong Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nana Ping
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Feiqiu Wen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen Institute of Pediatrics, 7019 Yi Tian Road, Shenzhen, 518038, China
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
5
|
Zhang Y, Chen X, Xiao Y, Mei Y, Yang T, Li D, Wang X, Yang H, Huang D, Hao D. Elucidating the role of RBM5 in osteoclastogenesis: a novel potential therapeutic target for osteoporosis. BMC Musculoskelet Disord 2023; 24:921. [PMID: 38031049 PMCID: PMC10688468 DOI: 10.1186/s12891-023-07002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Osteoporosis is a prevalent bone disease with multigene involved, and the molecular mechanisms of its pathogenesis are not entirely understood. This study aims to identify novel key genes involved in osteoporosis to discover potential pharmacological targets. We analyzed three microarray datasets and identified four differentially expressed genes. The LASSO model indicated that RNA-binding motif protein 5 (RBM5) is associated with osteoporosis and is a potential drug target. We conducted the Spearman correlation analysis and found 52 genes that were significantly related to RBM5. Enrichment analysis showed that these genes were primarily involved in RNA splicing and osteoclast differentiation pathways. By using lentivirus-based shRNA, we successfully knocked down RBM5 expression in RAW264.7 cell line, which showed that RBM5 knockdown significantly impaired their differentiation potential to mature osteoclasts and significantly inhibited bone-resorbing activity. RT-qPCR analyses revealed the expression of osteoclastogenesis marker genes was downregulated along with RBM5 expression. These findings suggest that RBM5 plays a crucial role in the pathogenesis of osteoporosis and provides a new potential pharmacological target.
Collapse
Affiliation(s)
- Yuyang Zhang
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xue Chen
- Central Hospital, China National Petroleum Corporation, Chengdu, 610051, China
| | - Yuan Xiao
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yibo Mei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tong Yang
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dongchen Li
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaohui Wang
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dageng Huang
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Dingjun Hao
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
6
|
Snyder K, Gorse K, Kochanek PM, Jackson TC. Neuronal RBM5 modulates cell signaling responses to traumatic and hypoxic-ischemic injury in a sex-dependent manner. Cell Death Discov 2023; 9:379. [PMID: 37848418 PMCID: PMC10582027 DOI: 10.1038/s41420-023-01677-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
It is not clear if inhibiting the pro-death gene RNA binding motif 5 (RBM5) is neuroprotective in isolated primary neurons or if it regulates cell survival in a sex-dependent manner. Here we established sex-dichotomized primary cortical neuron cultures from transgenic mice harboring a floxed RBM5 gene-trap. Lentivirus-mediated expression of CRE was used to silence RBM5 expression. Male and female neurons were maintained in next-generation Neurobasal-Plus media and subjected to a mechanical stretch-injury (to model traumatic brain injury) or oxygen-glucose deprivation/OGD (to model ischemia). RBM5 KO did not affect 24 h post-injury survival as determined by lactate dehydrogenase (LDH) release, in either paradigm. In contrast, female KO neurons had increased spectrin breakdown products post-insult (in both models). Furthermore, in OGD, RBM5 KO in male neurons exacerbated injury-induced downregulation of pro-survival AKT activation (pAKT473) but conversely led to pAKT473 sparing in female neurons. Moreover, global proteomics identified 19 differentially expressed (DE) proteins in OGD-injured male neurons, and 102 DE proteins in injured female neurons. Two novel RBM5-regulated proteins (PIGQ and EST1C) were identified in injured male KO neurons, and 8 novel proteins identified in injured female KO neurons (S35A5, DHTK1, STX3, IF3M, RN167, K1C14, DYHS, and MED13). In summary, RBM5 inhibition does not modify neuronal survival in primary mouse neurons in 2 clinically relevant models of excitotoxic insult, but RBM5 does regulate intracellular responses to injury in a sex-dependent manner.
Collapse
Affiliation(s)
- Kara Snyder
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Kiersten Gorse
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, Pittsburgh, PA, 15224, USA
| | - Travis C Jackson
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA.
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Zhang L, Li C, He Y, Kuang C, Qiu X, Gu L, Wu J, Pang J, Zhang L, Xie B, Peng J, Yin S, Jiang Y. TRPM4 Drives Cerebral Edema by Switching to Alternative Splicing Isoform After Experimental Traumatic Brain Injury. J Neurotrauma 2023; 40:1779-1795. [PMID: 37078148 DOI: 10.1089/neu.2022.0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Traumatic brain injury (TBI) affects persons of all ages and is recognized as a major cause of death and disability worldwide; it also brings heavy life burden to patients and their families. The treatment of those with secondary injury after TBI is still scarce, however. Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism associated with various physiological processes, while the contribution of AS in treatment after TBI is poorly illuminated. In this study, we performed and analyzed the transcriptome and proteome datasets of brain tissue at multiple time points in a controlled cortical impact (CCI) mouse model. We found that AS, as an independent change against the transcriptional level, is a novel mechanism linked to cerebral edema after TBI. Bioinformatics analysis further indicated that the transformation of splicing isoforms after TBI was related to cerebral edema. Accordingly, we found that the fourth exon of transient receptor potential channel melastatin 4 (Trpm4) abrogated skipping at 72 h after TBI, resulting in a frameshift of the encoded amino acid and an increase in the proportion of spliced isoforms. Using magnetic resonance imaging (MRI), we have shown the numbers of 3nEx isoforms of Trpm4 may be positively correlated with volume of cerebral edema. Thus alternative splicing of Trpm4 becomes a noteworthy mechanism of potential influence on edema. In summary, alternative splicing of Trpm4 may drive cerebral edema after TBI. Trpm4 is a potential therapeutic targeting cerebral edema in patients with TBI.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaojie Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yijing He
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenghao Kuang
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Xiancheng Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Gu
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Department of Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Mullari M, Fossat N, Skotte NH, Asenjo-Martinez A, Humphreys DT, Bukh J, Kirkeby A, Scheel TKH, Nielsen ML. Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington's disease. Nat Commun 2023; 14:4348. [PMID: 37468457 DOI: 10.1038/s41467-023-39936-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players regulating RNA processing and are associated with disorders ranging from cancer to neurodegeneration. Here, we present a proteomics workflow for large-scale identification of RBPs and their RNA-binding regions in the mammalian brain identifying 526 RBPs. Analysing brain tissue from males of the Huntington's disease (HD) R6/2 mouse model uncovered differential RNA-binding of the alternative splicing regulator RBM5. Combining several omics workflows, we show that RBM5 binds differentially to transcripts enriched in pathways of neurodegeneration in R6/2 brain tissue. We further find these transcripts to undergo changes in splicing and demonstrate that RBM5 directly regulates these changes in human neurons derived from embryonic stem cells. Finally, we reveal that RBM5 interacts differently with several known huntingtin interactors and components of huntingtin aggregates. Collectively, we demonstrate the applicability of our method for capturing RNA interactor dynamics in the contexts of tissue and disease.
Collapse
Affiliation(s)
- Meeli Mullari
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Niels H Skotte
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Agnete Kirkeby
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Pourpre R, Lakisic G, Desgranges E, Cossart P, Pagliuso A, Bierne H. A bacterial virulence factor interacts with the splicing factor RBM5 and stimulates formation of nuclear RBM5 granules. Sci Rep 2022; 12:21961. [PMID: 36535993 PMCID: PMC9763339 DOI: 10.1038/s41598-022-26037-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.
Collapse
Affiliation(s)
- Renaud Pourpre
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Goran Lakisic
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Emma Desgranges
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Pascale Cossart
- grid.428999.70000 0001 2353 6535Institut Pasteur, Paris, France
| | - Alessandro Pagliuso
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Hélène Bierne
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| |
Collapse
|
10
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
11
|
Farooq J, Snyder K, Janesko-Feldman K, Gorse K, Vagni V, Kochanek PM, Jackson TC. RNA Binding Motif 5 Gene Deletion Modulates Cell Signaling in a Sex-Dependent Manner but not Hippocampal Cell Death. J Neurotrauma 2022; 39:577-589. [PMID: 35152732 PMCID: PMC8978574 DOI: 10.1089/neu.2021.0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA-binding motif 5 (RBM5) is a pro-death tumor suppressor gene in cancer cells. It remains to be determined if it is neurotoxic in the brain or rather if it plays a fundamentally different role in the central nervous system (CNS). Brain-specific RBM5 knockout (KO) mice were given a controlled cortical impact (CCI) traumatic brain injury (TBI). Markers of acute cellular damage and repair were measured in hippocampal homogenates 48 h post-CCI. Hippocampal CA1/CA3 cell counts were assessed 7 days post-CCI to determine if early changes in injury markers were associated with histological outcome. No genotype-dependent differences were found in the levels of apoptotic markers (caspase 3, caspase 6, and caspase 9). However, KO females had a paradoxical increase in markers of pro-death calpain activation (145/150-spectrin and breakdown products [SBDP]) and in DNA repair/survival markers. (pH2A.x and pCREB). CCI-injured male KOs had a significant increase in phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMKII). Despite sex/genotype-dependent differences in KOs in the levels of acute cell signaling targets involved in cell death pathways, 7 day hippocampal neuronal survival did not differ from that of wild types (WTs). Similarly, no differences in astrogliosis were observed. Finally, gene analysis revealed increased estrogen receptor α (ERα) levels in the KO hippocampus in females and may suggest a novel mechanism to explain sex-dimorphic effects on cell signaling. In summary, RBM5 inhibition did not affect hippocampal survival after a TBI in vivo but did modify targets involved in neural signal transduction/Ca2+ signaling pathways. Findings here support the view that RBM5 may serve a purpose in the CNS that is dissimilar from its traditional pro-death role in cancer.
Collapse
Affiliation(s)
- Jeffrey Farooq
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Kara Snyder
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Keri Janesko-Feldman
- University of Pittsburgh School of Medicine, Critical Care Medicine, Pittsburgh, Pennsylvania, United States,
| | - Kiersten Gorse
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Vincent Vagni
- University of Pittsburgh School of Medicine, Critical Care Medicine, Pittsburgh, Pennsylvania, United States,
| | - Patrick M. Kochanek
- University of Pittsburgh School of Medicine, Critical Care Medicine, John G. Rangos Research Center, Safar Center for Resuscitation Research, 4401 Penn Avenue, Pittsburgh, Pennsylvania, United States, 15224
- United States
| | - Travis C. Jackson
- University of South Florida, 7831, Molecular Pharmacology and Physiology, 4202 E Fowler Ave, Tampa, Florida, United States, 33620-9951
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, 560 Channelside Dr, Tampa, Florida, United States, 33602
| |
Collapse
|
12
|
Wright DJ, Hall NAL, Irish N, Man AL, Glynn W, Mould A, Angeles ADL, Angiolini E, Swarbreck D, Gharbi K, Tunbridge EM, Haerty W. Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes. BMC Genomics 2022; 23:42. [PMID: 35012468 PMCID: PMC8744310 DOI: 10.1186/s12864-021-08261-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alternative splicing is a key mechanism underlying cellular differentiation and a driver of complexity in mammalian neuronal tissues. However, understanding of which isoforms are differentially used or expressed and how this affects cellular differentiation remains unclear. Long read sequencing allows full-length transcript recovery and quantification, enabling transcript-level analysis of alternative splicing processes and how these change with cell state. Here, we utilise Oxford Nanopore Technologies sequencing to produce a custom annotation of a well-studied human neuroblastoma cell line SH-SY5Y, and to characterise isoform expression and usage across differentiation. RESULTS We identify many previously unannotated features, including a novel transcript of the voltage-gated calcium channel subunit gene, CACNA2D2. We show differential expression and usage of transcripts during differentiation identifying candidates for future research into state change regulation. CONCLUSIONS Our work highlights the potential of long read sequencing to uncover previously unknown transcript diversity and mechanisms influencing alternative splicing.
Collapse
Affiliation(s)
- David J Wright
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Nicola A L Hall
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire, OX3 3JX, UK
- Oxford Health, NHS Foundation Trust, Oxford, Oxfordshire, OX3 7JX, UK
| | - Naomi Irish
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Angela L Man
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Will Glynn
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Arne Mould
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire, OX3 3JX, UK
- Oxford Health, NHS Foundation Trust, Oxford, Oxfordshire, OX3 7JX, UK
| | - Alejandro De Los Angeles
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire, OX3 3JX, UK
- Oxford Health, NHS Foundation Trust, Oxford, Oxfordshire, OX3 7JX, UK
| | - Emily Angiolini
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire, OX3 3JX, UK
- Oxford Health, NHS Foundation Trust, Oxford, Oxfordshire, OX3 7JX, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK.
| |
Collapse
|
13
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
14
|
Wang D, Wang X, Huang H, Wang H. Triclosan regulates alternative splicing events of nerve-related genes through RNA-binding protein CELF2 to induce zebrafish neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125414. [PMID: 33621777 DOI: 10.1016/j.jhazmat.2021.125414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Herein, we demonstrated that triclosan (TCS) induced neurotoxicity mediated by pre-mRNA alternative splicing (AS). TCS exposure resulted in a series of phenotypic malformations, abnormal locomotor behavior, circadian rhythm disorder and inhibited AChE activity. High throughput mRNA sequencing revealed that TCS regulated the AS events of nerve-related genes. Meanwhile, abnormal expression was observed in marker genes related to nerve cell migration, axon guidance and myelination. The expression of mitochondrial apoptosis activator bcl2l11 was significantly increased under TCS exposure. Interestingly, CELF2 as one of the important RNA-binding proteins was closely related to the AS events, and its mRNA and protein expression levels were significantly increased in zebrafish brain under acute or chronic TCS exposure. Functional knock-down and over-expression of celf2 confirmed that TCS led to nervous system injury and developmental defects through the CELF2-mediated AS events of genes (mbpa, mef2d, u2af2b and matn3b). Histopathological injury, phenotypic malformation, abnormal locomotor behavior and changes in neuromarkers all confirmed the biological functions of CELF2 in zebrafish brain. These findings demonstrate that TCS might regulate some of the AS events of nerve-related genes through upregulating the expression of CELF2. Thus, CELF2 may serve as a target for the prevention, diagnosis and treatment of contaminant-induced neurological diseases.
Collapse
Affiliation(s)
- Danting Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
15
|
Chen Q, Li ZL, Fu SQ, Wang SY, Liu YT, Ma M, Yang XR, Xie WJ, Gong BB, Sun T. Development of prognostic signature based on RNA binding proteins related genes analysis in clear cell renal cell carcinoma. Aging (Albany NY) 2021; 13:3926-3944. [PMID: 33461173 PMCID: PMC7906138 DOI: 10.18632/aging.202360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
RNA binding proteins (RBPs) play significant roles in the development of tumors. However, a comprehensive analysis of the biological functions of RBPs in clear cell renal cell carcinoma (ccRCC) has not been performed. Our study aimed to construct an RBP-related risk model for prognosis prediction in ccRCC patients. First, RNA sequencing data of ccRCC were downloaded from The Cancer Genome Atlas (TCGA) database. Three RBP genes (EIF4A1, CARS, and RPL22L1) were validated as prognosis-related hub genes by univariate and multivariate Cox regression analyses and were integrated into a prognostic model by least absolute shrinkage and selection operator (LASSO) Cox regression analysis. According to this model, patients with high risk scores displayed significantly worse overall survival (OS) than those with low risk scores. Moreover, the multivariate Cox analysis results indicated that risk score, tumor grade, and tumor stage were significantly correlated with patient OS. A nomogram was constructed based on the three RBP genes and showed a good ability to predict outcomes in ccRCC patients. In conclusion, this study identified a three-RBP gene risk model for predicting the prognosis of patients, which is conducive to the identification of novel diagnostic and prognostic molecular markers.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Long Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sheng-Qiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Si-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yu-Tang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Rong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wen-Jie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bin-Bin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|