1
|
Ayoub CA, Moore KI, Kuret J. Quantification of Methylation and Phosphorylation Stoichiometry. Methods Mol Biol 2024; 2754:221-235. [PMID: 38512670 DOI: 10.1007/978-1-0716-3629-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tauopathies including Alzheimer's disease (AD) are neurodegenerative disorders accompanied by the conversion of functional forms of the microtubule associated protein Tau into non-functional aggregates. A variety of post-translational modifications (PTMs) on Tau precede or accompany the conversion, placing them in position to modulate Tau function as well as its propensity to aggregate. Although Tau PTMs can be characterized by their sites of modification, their total stoichiometry when summed over all sites also is an important metric of their potential impact on function. Here we provide a protocol for rapidly producing recombinant Tau with enzyme-specific PTMs at high stoichiometry in vitro and demonstrate its utility in the context of hyperphosphorylation. Additionally, protocols for estimating phosphorylation and methylation stoichiometry on Tau proteins isolated from any source are presented. Together these methods support experimentation on Tau PTM function over a wide range of experimental conditions.
Collapse
Affiliation(s)
- Christopher A Ayoub
- Medical Scientist Training Program, Ohio State University College of Medicine, Columbus, OH, USA
| | - Khadijah I Moore
- Interdisciplinary Biophysics Graduate Program, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jeff Kuret
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
2
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Liu JJ, Long YF, Xu P, Guo HD, Cui GH. Pathogenesis of miR-155 on nonmodifiable and modifiable risk factors in Alzheimer's disease. Alzheimers Res Ther 2023; 15:122. [PMID: 37452431 PMCID: PMC10347850 DOI: 10.1186/s13195-023-01264-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease in the central nervous system and is the primary cause of dementia. It is clinically characterized by the memory impairment, aphasia, apraxia, agnosia, visuospatial and executive dysfunction, behavioral changes, and so on. Incidence of this disease was bound up with age, genetic factors, cardiovascular and cerebrovascular dysfunction, and other basic diseases, but the exact etiology has not been clarified. MicroRNAs (miRNAs) are small endogenous non-coding RNAs that were involved in the regulation of post-transcriptional gene expression. miRNAs have been extensively studied as noninvasive potential biomarkers for disease due to their relative stability in bodily fluids. In addition, they play a significant role in the physiological and pathological processes of various neurological disorders, including stroke, AD, and Parkinson's disease. MiR-155, as an important pro-inflammatory mediator of neuroinflammation, was reported to participate in the progression of β-amyloid peptide and tau via regulating immunity and inflammation. In this review, we put emphasis on the effects of miR-155 on AD and explore the underlying biological mechanisms which could provide a novel approach for diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Fan Long
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Peng Xu
- Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Suthard RL, Jellinger AL, Surets M, Shpokayte M, Pyo AY, Buzharsky MD, Senne RA, Dorst K, Leblanc H, Ramirez S. Chronic Gq activation of ventral hippocampal neurons and astrocytes differentially affects memory and behavior. Neurobiol Aging 2023; 125:9-31. [PMID: 36801699 DOI: 10.1016/j.neurobiolaging.2023.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
Network dysfunction is implicated in numerous diseases and psychiatric disorders, and the hippocampus serves as a common origin for these abnormalities. To test the hypothesis that chronic modulation of neurons and astrocytes induces impairments in cognition, we activated the hM3D(Gq) pathway in CaMKII+ neurons or GFAP+ astrocytes within the ventral hippocampus across 3, 6, and 9 months. CaMKII-hM3Dq activation impaired fear extinction at 3 months and acquisition at 9 months. Both CaMKII-hM3Dq manipulation and aging had differential effects on anxiety and social interaction. GFAP-hM3Dq activation impacted fear memory at 6 and 9 months. GFAP-hM3Dq activation impacted anxiety in the open field only at the earliest time point. CaMKII-hM3Dq activation modified the number of microglia, while GFAP-hM3Dq activation impacted microglial morphological characteristics, but neither affected these measures in astrocytes. Overall, our study elucidates how distinct cell types can modify behavior through network dysfunction, while adding a more direct role for glia in modulating behavior.
Collapse
Affiliation(s)
- Rebecca L Suthard
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Alexandra L Jellinger
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Michelle Surets
- Undergraduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Monika Shpokayte
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | | | - Ryan A Senne
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Kaitlyn Dorst
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Heloise Leblanc
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Steve Ramirez
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Alvente S, Matteoli G, Molina-Porcel L, Landa J, Alba M, Bastianini S, Berteotti C, Graus F, Lo Martire V, Sabater L, Zoccoli G, Silvani A. Pilot Study of the Effects of Chronic Intracerebroventricular Infusion of Human Anti-IgLON5 Disease Antibodies in Mice. Cells 2022; 11:cells11061024. [PMID: 35326477 PMCID: PMC8947551 DOI: 10.3390/cells11061024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Anti-IgLON5 disease is a rare late-onset neurological disease associated with autoantibodies against IgLON5, neuronal accumulation of phosphorylated Tau protein (p-Tau), and sleep, respiratory, and motor alterations. Purpose: We performed a pilot study of whether the neuropathological and clinical features of anti-IgLON5 disease may be recapitulated in mice with chronic intracerebroventricular infusion of human anti-IgLON5 disease IgG (Pt-IgG). Methods: Humanized transgenic hTau mice expressing human Tau protein and wild-type (WT) control mice were infused intracerebroventricularly with Pt-IgG or with antibodies from a control subject for 14 days. The sleep, respiratory, and motor phenotype was evaluated at the end of the antibody infusion and at least 30 days thereafter, followed by immunohistochemical assessment of p-Tau deposition. Results: In female hTau and WT mice infused with Pt-IgG, we found reproducible trends of diffuse neuronal cytoplasmic p-Tau deposits in the brainstem and hippocampus, increased ventilatory period during sleep, and decreased inter-lick interval during wakefulness. These findings were not replicated on male hTau mice. Conclusion: The results of our pilot study suggest, but do not prove, that chronic ICV infusion of mice with Pt-IgG may elicit neuropathological, respiratory, and motor alterations. These results should be considered as preliminary until replicated in larger studies taking account of potential sex differences in mice.
Collapse
Affiliation(s)
- Sara Alvente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (S.A.); (G.M.); (S.B.); (C.B.); (V.L.M.); (G.Z.)
| | - Gabriele Matteoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (S.A.); (G.M.); (S.B.); (C.B.); (V.L.M.); (G.Z.)
| | - Laura Molina-Porcel
- Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.M.-P.); (J.L.); (M.A.); (F.G.); (L.S.)
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
- Neurological Tissue Bank, Biobanc, Hospital Clínic, IDIBAPS, 08036 Barcelona, Spain
| | - Jon Landa
- Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.M.-P.); (J.L.); (M.A.); (F.G.); (L.S.)
| | - Mercedes Alba
- Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.M.-P.); (J.L.); (M.A.); (F.G.); (L.S.)
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (S.A.); (G.M.); (S.B.); (C.B.); (V.L.M.); (G.Z.)
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (S.A.); (G.M.); (S.B.); (C.B.); (V.L.M.); (G.Z.)
| | - Francesc Graus
- Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.M.-P.); (J.L.); (M.A.); (F.G.); (L.S.)
| | - Viviana Lo Martire
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (S.A.); (G.M.); (S.B.); (C.B.); (V.L.M.); (G.Z.)
| | - Lidia Sabater
- Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.M.-P.); (J.L.); (M.A.); (F.G.); (L.S.)
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (S.A.); (G.M.); (S.B.); (C.B.); (V.L.M.); (G.Z.)
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; (S.A.); (G.M.); (S.B.); (C.B.); (V.L.M.); (G.Z.)
- Correspondence:
| |
Collapse
|
6
|
Bourbouli M, Paraskevas GP, Rentzos M, Mathioudakis L, Zouvelou V, Bougea A, Tychalas A, Kimiskidis VK, Constantinides V, Zafeiris S, Tzagournissakis M, Papadimas G, Karadima G, Koutsis G, Kroupis C, Kartanou C, Kapaki E, Zaganas I. Genotyping and Plasma/Cerebrospinal Fluid Profiling of a Cohort of Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Patients. Brain Sci 2021; 11:brainsci11091239. [PMID: 34573259 PMCID: PMC8472580 DOI: 10.3390/brainsci11091239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of the same pathophysiological spectrum and have common genetic and cerebrospinal fluid (CSF) biomarkers. Our aim here was to identify causative gene variants in a cohort of Greek patients with FTD, ALS and FTD-ALS, to measure levels of CSF biomarkers and to investigate genotype-phenotype/CSF biomarker associations. In this cohort of 130 patients (56 FTD, 58 ALS and 16 FTD-ALS), we performed C9orf72 hexanucleotide repeat expansion analysis, whole exome sequencing and measurement of “classical” (Aβ42, total tau and phospho-tau) and novel (TDP-43) CSF biomarkers and plasma progranulin. Through these analyses, we identified 14 patients with C9orf72 repeat expansion and 11 patients with causative variants in other genes (three in TARDBP, three in GRN, three in VCP, one in FUS, one in SOD1). In ALS patients, we found that levels of phospho-tau were lower in C9orf72 repeat expansion and MAPT c.855C>T (p.Asp285Asp) carriers compared to non-carriers. Additionally, carriers of rare C9orf72 and APP variants had lower levels of total tau and Aβ42, respectively. Plasma progranulin levels were decreased in patients carrying GRN pathogenic variants. This study expands the genotypic and phenotypic spectrum of FTD/ALS and offers insights in possible genotypic/CSF biomarker associations.
Collapse
Affiliation(s)
- Mara Bourbouli
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - George P. Paraskevas
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
- 2nd Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| | - Mihail Rentzos
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Vasiliki Zouvelou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Anastasia Bougea
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Athanasios Tychalas
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- 1st Department of Neurology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Vasilios Constantinides
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Spiros Zafeiris
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Minas Tzagournissakis
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
| | - Georgios Papadimas
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Georgia Karadima
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Georgios Koutsis
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Chrisoula Kartanou
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Elisabeth Kapaki
- 1st Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (G.P.P.); (M.R.); (V.Z.); (A.B.); (V.C.); (G.P.); (G.K.); (G.K.); (C.K.); (E.K.)
| | - Ioannis Zaganas
- Neurogenetics Laboratory, Neurology Department, Medical School, University of Crete, 71003 Heraklion, Greece; (M.B.); (L.M.); (S.Z.); (M.T.)
- Correspondence: ; Tel.: +30-2810-394643
| |
Collapse
|
7
|
Raber J, Perez R, Torres ERS, Krenik D, Boutros S, Patel E, Chlebowski AC, Torres ER, Perveen Z, Penn A, Paulsen DB, Bartlett MG, Jia E, Holden S, Hall R, Morré J, Wong C, Ho E, Choi J, Stevens JF, Noël A, Bobe G, Kisby G. Effects of Chronic Secondhand Smoke (SHS) Exposure on Cognitive Performance and Metabolic Pathways in the Hippocampus of Wild-Type and Human Tau Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57009. [PMID: 34009016 PMCID: PMC8132614 DOI: 10.1289/ehp8428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Exposure to secondhand smoke (SHS) is a risk factor for developing sporadic forms of sporadic dementia. A human tau (htau) mouse model is available that exhibits age-dependent tau dysregulation, neurofibrillary tangles, neuronal loss, neuroinflammation, and oxidative stress starting at an early age (3-4 months) and in which tau dysregulation and neuronal loss correlate with synaptic dysfunction and cognitive decline. OBJECTIVE The goal of this study was to assess the effects of chronic SHS exposure (10 months' exposure to ∼30 mg/m3) on behavioral and cognitive function, metabolism, and neuropathology in mice. METHODS Wild-type (WT) and htau female and male mice were exposed to SHS (90% side stream, 10% main stream) using the SCIREQ® inExpose™ system or air control for 168 min per day, for 312 d, 7 d per week. The exposures continued during the days of behavioral and cognitive testing. In addition to behavioral and cognitive performance and neuropathology, the lungs of mice were examined for pathology and alterations in gene expression. RESULTS Mice exposed to chronic SHS exposure showed the following genotype-dependent responses: a) lower body weights in WT, but not htau, mice; b) less spontaneous alternation in WT, but not htau, mice in the Y maze; c) faster swim speeds of WT, but not htau, mice in the water maze; d) lower activity levels of WT and htau mice in the open field; e) lower expression of brain PHF1, TTCM1, IGF1β, and HSP90 protein levels in WT male, but not female, mice; and f) more profound effects on hippocampal metabolic pathways in WT male than female mice and more profound effects in WT than htau mice. DISCUSSION The brain of WT mice, in particular WT male mice, might be especially susceptible to the effects of chronic SHS exposure. In WT males, independent pathways involving ascorbate, flavin adenine dinucleotide, or palmitoleic acid might contribute to the hippocampal injury following chronic SHS exposure. https://doi.org/10.1289/EHP8428.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- Departments of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon, USA
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Eileen Ruth S. Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Esha Patel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Anna C. Chlebowski
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, Oregon, USA
| | - Estefania Ramos Torres
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, Oregon, USA
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Daniel B. Paulsen
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | | | - Enze Jia
- University of Georgia, College of Pharmacy, Athens, Georgia, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Reed Hall
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, Oregon, USA
| | - Carmen Wong
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Animal Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Gerd Bobe
- Mass Spectrometry Core, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Glen Kisby
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, Oregon, USA
| |
Collapse
|