1
|
Yue X, Chen X, Zang Y, Wu J, Chen G, Tan H, Yang K. Bioinformatics analysis reveals key mechanisms of oligodendrocytes and oligodendrocyte precursor cells regulation in spinal cord Injury. Sci Rep 2025; 15:6400. [PMID: 39984610 PMCID: PMC11845783 DOI: 10.1038/s41598-025-90489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
Despite extensive research, spinal cord injuries (SCI), which could cause severe sensory, motor and autonomic dysfunction, remain largely incurable. Oligodendrocytes and oligodendrocyte precursor cells (ODC/OPC) play a crucial role in neural morphological repair and functional recovery following SCI. We performed single-cell sequencing (scRNA-seq) on 59,558 cells from 39 mouse samples, combined with microarray data from 164 SCI samples and 3 uninjured samples. We further validated our findings using a large clinical cohort consisting of 38 SCI patients, 10 healthy controls, and 10 trauma controls, assessed with the American Spinal Cord Injury Association (ASIA) scale. We proposed a novel SCI classification model based on the expression of prognostic differentially expressed ODC/OPC differentiation-related genes (PDEODGs). This model includes three types: Low ODC/OPC Score Classification (LOSC), Median ODC/OPC Score Classification (MOSC), and High ODC/OPC Score Classification (HOSC). Considering the relationship between these subtypes and prognosis, we speculated that enhancing ODC/OPC differentiation and inhibiting inflammatory infiltration may improve outcomes. Additionally, we identified potential treatments for SCI that target key genes within these subtypes, offering promising implications for therapy.
Collapse
Affiliation(s)
- Xi Yue
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xunling Chen
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yang Zang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinliang Wu
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guanhao Chen
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Tan
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kerong Yang
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Zavvarian MM, Modi AD, Sadat S, Hong J, Fehlings MG. Translational Relevance of Secondary Intracellular Signaling Cascades Following Traumatic Spinal Cord Injury. Int J Mol Sci 2024; 25:5708. [PMID: 38891894 PMCID: PMC11172219 DOI: 10.3390/ijms25115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Akshat D. Modi
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Department of Biological Sciences, University of Toronto, Scarborough, ON M1C 1A4, Canada
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada
| | - Sarah Sadat
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
| | - Michael G. Fehlings
- Division of Genetics and Development, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada; (M.-M.Z.); (A.D.M.); (S.S.); (J.H.)
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
3
|
Huang Z, Lin J, Jiang H, Lin W, Huang Z, Chen J, Xiao W, Lin Q, Wang J, Wen S, Zhu Q, Liu J. Metformin promotes Schwann cell remyelination, preserves neural tissue and improves functional recovery after spinal cord injury. Neuropeptides 2023; 100:102348. [PMID: 37236132 DOI: 10.1016/j.npep.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Patients with a spinal cord injury (SCI) usually suffer lifelong disability as a result. Considering this, SCI treatment and pathology study are urgently needed. Metformin, a widely used hypoglycemic drug, has been indicated for its important role in central nervous system diseases. This study aimed to investigate the potential effect of metformin on remyelination after SCI. In the present study, we established a cervical contusion SCI model and metformin treatment was applied after SCI. Biomechanical parameters and behavioral assessment were used to evaluate the severity of injury and the improvement of functional recovery after SCI, respectively. The immunofluorescence and western blot were performed at the terminal time point. Our results showed that treating with metformin after SCI improved functional recovery by reducing the white matter loss and promoting Schwann cell remyelination, and the Nrg1/ErbB signaling pathway may be involved in promoting remyelination mediated by oligodendrocytes and Schwann cells. In addition, the area of spared tissues was significantly increased in the metformin group. However, metformin had no significant effects on the glial scar and inflammation after SCI. In summary, these findings indicated that the role of metformin in Schwann cell remyelination after SCI was probably related to the regulation of the Nrg1/ErbB pathway. It is, therefore, possible to suggest that metformin may be a potential therapy for SCI.
Collapse
Affiliation(s)
- Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Wanrong Lin
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 51000, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Jiayu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Wende Xiao
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 51000, China
| | - Qiong Lin
- School of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 51000, China
| | - Shifeng Wen
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 51000, China.
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China.
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 51000, China.
| |
Collapse
|
4
|
Lin DS, Huang YW, Lee TH, Chang L, Huang ZD, Wu TY, Wang TJ, Ho CS. Rapamycin Alleviates Protein Aggregates, Reduces Neuroinflammation, and Rescues Demyelination in Globoid Cell Leukodystrophy. Cells 2023; 12:cells12070993. [PMID: 37048066 PMCID: PMC10093124 DOI: 10.3390/cells12070993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
We have shown in vivo and in vitro previously that psychosine causes dysfunction of autophagy and the ubiquitin-proteasome system underlying the pathogenesis of globoid cell leukodystrophy (GLD), a devastating lysosomal storage disease complicated by global demyelination. Here, we investigated the therapeutic efficacy of the mTOR inhibitor rapamycin in twitcher mice, a murine model of infantile GLD, in biochemical, histochemical, and clinical aspects. Administration of rapamycin to twitcher mice inhibited mTOR signaling in the brains, and significantly reduced the accumulation of insoluble ubiquitinated protein and the formation of ubiquitin aggregates. The astrocytes and microglia reactivity were attenuated in that reactive astrocytes, ameboid microglia, and globoid cells were reduced in the brains of rapamycin-treated twitcher mice. Furthermore, rapamycin improved the cortical myelination, neurite density, and rescued the network complexity in the cortex of twitcher mice. The therapeutic action of rapamycin on the pathology of the twitcher mice's brains prolonged the longevity of treated twitcher mice. Overall, these findings validate the therapeutic efficacy of rapamycin and highlight enhancing degradation of aggregates as a therapeutic strategy to modulate neuroinflammation, demyelination, and disease progression of GLD and other leukodystrophies associated with intracellular aggregates.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsung-Han Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Lung Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Zon-Darr Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsu-Yen Wu
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Che-Sheng Ho
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
- Department of Neurology, MacKay Children's Hospital, Taipei 10449, Taiwan
| |
Collapse
|
5
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
6
|
Chen KZ, Liu SX, Li YW, He T, Zhao J, Wang T, Qiu XX, Wu HF. Vimentin as a potential target for diverse nervous system diseases. Neural Regen Res 2022; 18:969-975. [PMID: 36254976 PMCID: PMC9827761 DOI: 10.4103/1673-5374.355744] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Vimentin is a major type III intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout (GFAP-/-VIM-/-) mice. However, attenuated glial scar formation in post-stroke in GFAP-/- VIM-/- mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIM-/- mice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.
Collapse
Affiliation(s)
- Kang-Zhen Chen
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Shu-Xian Liu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Yan-Wei Li
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Tao He
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jie Zhao
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tao Wang
- Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Xian-Xiu Qiu
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Hong-Fu Wu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| |
Collapse
|
7
|
Yao XQ, Chen JY, Yu ZH, Huang ZC, Hamel R, Zeng YQ, Huang ZP, Tu KW, Liu JH, Lu YM, Zhou ZT, Pluchino S, Zhu QA, Chen JT. Bioinformatics analysis identified apolipoprotein E as a hub gene regulating neuroinflammation in macrophages and microglia following spinal cord injury. Front Immunol 2022; 13:964138. [PMID: 36091018 PMCID: PMC9448857 DOI: 10.3389/fimmu.2022.964138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.
Collapse
Affiliation(s)
- Xin-Qiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Ying Chen
- Department of Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zi-Han Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zu-Cheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Regan Hamel
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Yong-Qiang Zeng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Wu Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Hao Liu
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan-Meng Lu
- Center of Electron Microscopy, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Zhi-Tao Zhou
- Center of Electron Microscopy, Central Laboratory, Southern Medical University, Guangzhou, China
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Qing-An Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Subirada PV, Vaglienti MV, Joray MB, Paz MC, Barcelona PF, Sánchez MC. Rapamycin and Resveratrol Modulate the Gliotic and Pro-Angiogenic Response in Müller Glial Cells Under Hypoxia. Front Cell Dev Biol 2022; 10:855178. [PMID: 35300418 PMCID: PMC8921868 DOI: 10.3389/fcell.2022.855178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and hypoxia-reoxygenation are frequently developed through the course of many retinal diseases of different etiologies. Müller glial cells (MGCs), together with microglia and astrocytes, participate firstly in response to the injury and later in the repair of tissue damage. New pharmacological strategies tend to modulate MGCs ability to induce angiogenesis and gliosis in order to accelerate the recovery stage. In this article, we investigated the variation in autophagy flux under hypoxia during 4 h, employing both gas culture chamber (1% O2) and chemical (CoCl2) hypoxia, and also in hypoxia-reoxygenation. Then, we delineated a strategy to induce autophagy with Rapamycin and Resveratrol and analysed the gliotic and pro-angiogenic response of MGCs under hypoxic conditions. Our results showed an increase in LC3B II and p62 protein levels after both hypoxic exposure respect to normoxia. Moreover, 1 h of reoxygenation after gas hypoxia upregulated LC3B II levels respect to hypoxia although a decreased cell survival was observed. Exposure to low oxygen levels increased the protein expression of the glial fibrillary acid protein (GFAP) in MGCs, whereas Vimentin levels remained constant. In our experimental conditions, Rapamycin but not Resveratrol decreased GFAP protein levels in hypoxia. Finally, supernatants of MGCs incubated in hypoxic conditions and in presence of the autophagy inductors inhibited endothelial cells (ECs) tubulogenesis. In agreement with these results, reduced expression of vascular endothelial growth factor (VEGF) mRNA was observed in MGCs with Rapamycin, whereas pigment epithelium-derived factor (PEDF) mRNA levels significantly increased in MGCs incubated with Resveratrol. In conclusion, this research provides evidence about the variation of autophagy flux under hypoxia and hypoxia-reoxygenation as a protective mechanism activated in response to the injury. In addition, beneficial effects were observed with Rapamycin treatment as it decreased the gliotic response and prevented the development of newly formed blood vessels.
Collapse
Affiliation(s)
- Paula V Subirada
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María V Vaglienti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Mariana B Joray
- Universidad Católica de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sánchez Labrador J. S., Córdoba, Argentina
| | - María C Paz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Pablo F Barcelona
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María C Sánchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
9
|
Anatomical and behavioral outcomes following a graded hemi-contusive cervical spinal cord injury model in mice. Behav Brain Res 2022; 419:113698. [PMID: 34856301 DOI: 10.1016/j.bbr.2021.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND A graded hemi-contusion spinal cord injury produces complex anatomical deformation of the spinal cord parenchyma. The relationship between lesion severity and behavioral consequences in a novel contusion mouse model remains unknown. PURPOSE We aimed to establish a graded cervical hemi-contusion spinal cord injury model in mice and investigate the correlation between graded anatomical damage to the spinal cord and resulting behavioral impairments. METHODS Thirty-two mice were divided into groups of 1.2 mm, 1.5 mm and sham. The tip of an impactor with a diameter of 1 mm was utilized to compress the left dorsal cord of C5 by 1.2 mm or 1.5 mm at a speed of 300 mm/s. Forelimb motor function was evaluated using rearing, grooming and grip-strength tests before and after the injuries. Histologically the area of white matter sparing, gray matter sparing and lesion area were quantified at 6-week-post-injury. RESULTS Behavioral assessments showed a more severe forelimb functional deficit in 1.5 mm contusion displacements relative to 1.2 mm contusion displacements after injury. The 1.2 mm hemi-contusion mainly caused damage to the dorsal fasciculus, ventral and dorsal horn, while the 1.5 mm hemi-contusion lead to additional damage extending to ventral fasciculus. Sparing of the gray and white matter at the epicenter was 36.8 ± 2.4% and 12.4 ± 2.6% in the 1.2 mm group, and 27.6 ± 4.0% and 4.1 ± 2.2% in the 1.5 mm group, respectively. Furthermore, the lesion area was 20.8 ± 3.0% and 36.0 ± 2.1% in the 1.2 mm and 1.5 mm groups, respectively. There was a significant correlation between the performance in the grooming test and white matter sparing, and between grip-test strength and gray matter sparing. CONCLUSION The present study demonstrates that a hemi-contusion cervical spinal cord injury in mice can be graded by contusion displacement and that there is a correlation between anatomical and behavioral outcomes. This study provides a means for determining the severity of lesions in a contusion mouse model.
Collapse
|