1
|
Schrader JM, Majchrzak M, Xu F, Lee H, Agostinucci K, Davis J, Benveniste H, Van Nostrand WE. Cerebral Proteomic Changes in the rTg-D Rat Model of Cerebral Amyloid Angiopathy Type-2 With Cortical Microhemorrhages and Cognitive Impairments. Neurosci Insights 2024; 19:26331055241288172. [PMID: 39386146 PMCID: PMC11462563 DOI: 10.1177/26331055241288172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a novel transgenic rat model (rTg-D) that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops arteriolar CAA type-2. Here, we show that deposition of fibrillar Aβ promotes arteriolar smooth muscle cell loss and cerebral microhemorrhages that can be detected by magnetic resonance imaging and confirmed by histopathology. Aged rTg-D rats also present with cognitive deficits. Cerebral proteomic analyses revealed 241 proteins that were significantly elevated with an increase of >50% in rTg-D rats presenting with CAA compared to wild-type rats. Fewer proteins were significantly decreased in rTg-D rats. Of note, high temperature requirement peptidase A (HTRA1), a proteinase linked to transforming growth factor beta 1 (TGF-β1) signaling, was elevated and found to accumulate in cerebral vessels harboring amyloid deposits. Pathway analysis indicated elevation of the TGF-β1 pathway and increased TGF-β1 levels were detected in rTg-D rats. In conclusion, the present findings provide new molecular insights into the pathogenesis of CAA and suggest a role for interactions between HTRA1 and TGF-β1 in the disease process.
Collapse
Affiliation(s)
- Joseph M Schrader
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Mark Majchrzak
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Kevin Agostinucci
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Judianne Davis
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
2
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
3
|
Ando K, Küçükali F, Doeraene E, Nagaraj S, Antonelli EM, Thazin Htut M, Yilmaz Z, Kosa AC, Lopez-Guitierrez L, Quintanilla-Sánchez C, Aydin E, Ramos AR, Mansour S, Turbant S, Schurmans S, Sleegers K, Erneux C, Brion JP, Leroy K. Alteration of gene expression and protein solubility of the PI 5-phosphatase SHIP2 are correlated with Alzheimer's disease pathology progression. Acta Neuropathol 2024; 147:94. [PMID: 38833073 PMCID: PMC11150309 DOI: 10.1007/s00401-024-02745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.
Collapse
Affiliation(s)
- Kunie Ando
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium.
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie Doeraene
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Siranjeevi Nagaraj
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Eugenia Maria Antonelli
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - May Thazin Htut
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute (UNI), 808 Route de Lennik, 1070, Brussels, Belgium
| | - Andreea-Claudia Kosa
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Lidia Lopez-Guitierrez
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Carolina Quintanilla-Sánchez
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Emmanuel Aydin
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Ana Raquel Ramos
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Salwa Mansour
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute (UNI), 808 Route de Lennik, 1070, Brussels, Belgium
| | - Sabrina Turbant
- Biobanque Neuro-CEB, Hôpital de la Pitié-Salpétrière, Paris, France
- Plateforme de Ressources Biologiques (PRB), Hôpital de La Pitié-Salpêtrière, AP-HP, Paris, France
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA Research Centre, University of Liège, Liège, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christophe Erneux
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 808 Route de Lennik, 1070, Brussels, Belgium
| | - Jean-Pierre Brion
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium
| | - Karelle Leroy
- Alzheimer and Other Tauopathies Research Group, ULB Neuroscience Institute (UNI), ULB Center for Diabetes Research (UCDR), Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Bldg GE, 1070, Brussels, Belgium.
| |
Collapse
|
4
|
Jaye S, Sandau US, Saugstad JA. Clathrin mediated endocytosis in Alzheimer's disease: cell type specific involvement in amyloid beta pathology. Front Aging Neurosci 2024; 16:1378576. [PMID: 38694257 PMCID: PMC11061891 DOI: 10.3389/fnagi.2024.1378576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
This review provides a comprehensive examination of the role of clathrin-mediated endocytosis (CME) in Alzheimer's disease (AD) pathogenesis, emphasizing its impact across various cellular contexts beyond neuronal dysfunction. In neurons, dysregulated CME contributes to synaptic dysfunction, amyloid beta (Aβ) processing, and Tau pathology, highlighting its involvement in early AD pathogenesis. Furthermore, CME alterations extend to non-neuronal cell types, including astrocytes and microglia, which play crucial roles in Aβ clearance and neuroinflammation. Dysregulated CME in these cells underscores its broader implications in AD pathophysiology. Despite significant progress, further research is needed to elucidate the precise mechanisms underlying CME dysregulation in AD and its therapeutic implications. Overall, understanding the complex interplay between CME and AD across diverse cell types holds promise for identifying novel therapeutic targets and interventions.
Collapse
Affiliation(s)
| | | | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
5
|
Rodríguez‐Santiago MA, Wojna V, Miranda‐Valentín E, Arnold S, Sepúlveda‐Rivera V. Diagnosing Alzheimer's disease: Which dementia screening test to use in elderly Puerto Ricans with mild cognitive impairment and early Alzheimer's disease? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12554. [PMID: 38454965 PMCID: PMC10918733 DOI: 10.1002/dad2.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
Typically, Alzheimer's disease (AD) diagnosis is not made at its earliest period, for instance, at mild cognitive impairment (MCI) and early AD (E-AD). Our study aims to demonstrate a correlation between the screening tools, including the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Clinical Dementia Rating (CDR), and the biological biomarkers in the cerebrospinal fluid (CSF) amyloid beta 1-42 (Aβ42), phosphorylated tau (p-tau) proteins and total tau (t-tau)/Aβ42 ratio in Puerto Ricans > 55 years old with MCI and E-AD. We evaluated 30 participants, including demographics, memory scales, and CSF biomarkers. Twenty-eight CSF biomarkers (Aβ42, p-tau protein, and t-tau/Aβ42 ratio) were analyzed using the Meso Scale Discovery Platform (MSD). Associations between memory scales (MoCA, MMSE, CDR) and CSF markers were performed using Spearman rho correlation. Our study revealed a statistical association favoring a direct relationship between MMSE and MoCA with t-tau/Aβ42 ratio in CSF (P = 0.022, P = 0.035, respectively). We found a trend toward significance with an inverse relationship with MMSE and Aβ42 (P = 0.069) and a direct relationship with MMSE and p-tau (P = 0.098). MMSE and MoCA screening tests were identified with a statistically significant association with the CSF biomarkers, specifically t-tau/Aβ42 ratio, in elderly Puerto Ricans with MCI and E-AD. Puerto Ricans > 55 years old with MCI and E-AD could be screened confidently with MMSE and MoCA for a higher likelihood of earlier detection and, thus, initiation of disease-modifying treatment and prompt non-pharmacological interventions.
Collapse
Affiliation(s)
- María A. Rodríguez‐Santiago
- Medical Sciences CampusSchool of MedicineDepartment of Internal MedicineUniversity of Puerto RicoSan JuanPuerto RicoUSA
| | - Valerie Wojna
- Medical Sciences CampusSchool of MedicineDepartment of Internal MedicineUniversity of Puerto RicoSan JuanPuerto RicoUSA
- Medical Sciences CampusSchool of MedicineDepartment of NeurologyUniversity of Puerto RicoSan JuanPuerto RicoUSA
| | - Eric Miranda‐Valentín
- Medical Sciences CampusSchool of MedicineDepartment of Internal MedicineUniversity of Puerto RicoSan JuanPuerto RicoUSA
| | - Steven Arnold
- Department of NeurologyMassachusetts General HospitalWang Ambulatory Care CenterBostonMassachusettsUSA
| | - Vanessa Sepúlveda‐Rivera
- Medical Sciences CampusSchool of MedicineDepartment of Internal MedicineUniversity of Puerto RicoSan JuanPuerto RicoUSA
- Medical Sciences CampusSchool of MedicineDepartment of Internal MedicineGeriatrics DivisionUniversity of Puerto RicoSan JuanPuerto RicoUSA
| |
Collapse
|
6
|
Cao Q, Kumar M, Frazier A, Williams JB, Zhao S, Yan Z. Longitudinal characterization of behavioral, morphological and transcriptomic changes in a tauopathy mouse model. Aging (Albany NY) 2023; 15:11697-11719. [PMID: 37925173 PMCID: PMC10683589 DOI: 10.18632/aging.205057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/02/2023] [Indexed: 11/06/2023]
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD), have the gradual onset of neurobiological changes preceding clinical diagnosis by decades. To elucidate how brain dysfunction proceeds in neurodegenerative disorders, we performed longitudinal characterization of behavioral, morphological, and transcriptomic changes in a tauopathy mouse model, P301S transgenic mice. P301S mice exhibited cognitive deficits as early as 3 months old, and deficits in social preference and social cognition at 5-6 months. They had a significant decrease of arborization in basal dendrites of hippocampal pyramidal neurons from 3 months and apical dendrites of PFC pyramidal neurons at 9 months. Transcriptomic analysis of genome-wide changes revealed the enrichment of synaptic gene upregulation at 3 months of age, while most of these synaptic genes were downregulated in PFC and hippocampus of P301S mice at 9 months. These time-dependent changes in gene expression may lead to progressive alterations of neuronal structure and function, resulting in the manifestation of behavioral symptoms in tauopathies.
Collapse
Affiliation(s)
- Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Manasa Kumar
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Allea Frazier
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Jamal B. Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Shengkai Zhao
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
7
|
Jeyaraman M, Rajendran RL, Muthu S, Jeyaraman N, Sharma S, Jha SK, Muthukanagaraj P, Hong CM, Furtado da Fonseca L, Santos Duarte Lana JF, Ahn BC, Gangadaran P. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer's disease. Heliyon 2023; 9:e17808. [PMID: 37449130 PMCID: PMC10336689 DOI: 10.1016/j.heliyon.2023.e17808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Globally, neurological diseases pose a major burden to healthcare professionals in terms of the management and prevention of the disorder. Among neurological diseases, Alzheimer's disease (AD) accounts for 50%-70% of dementia and is the fifth leading cause of mortality worldwide. AD is a progressive, degenerative neurological disease, with the loss of neurons and synapses in the cerebral cortex and subcortical regions. The management of AD remains a debate among physicians as no standard and specific "disease-modifying" modality is available. The concept of 'Regenerative Medicine' is aimed at regenerating the degenerated neural tissues to reverse the pathology in AD. Genetically modified engineered stem cells modify the course of AD after transplantation into the brain. Extracellular vesicles (EVs) are an emerging new approach in cell communication that involves the transfer of cellular materials from parental cells to recipient cells, resulting in changes at the molecular and signaling levels in the recipient cells. EVs are a type of vesicle that can be transported between cells. Many have proposed that EVs produced from mesenchymal stem cells (MSCs) may have therapeutic promise in the treatment of AD. The biology of AD, as well as the potential applications of stem cells and their derived EVs-based therapy, were explored in this paper.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600056, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Government Dindigul Medical College and Hospital, Dindigul, Tamil Nadu, 624001, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth, Chengalpet, Tamil Nadu, 603108, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Purushothaman Muthukanagaraj
- Department of Internal Medicine & Psychiatry, SUNY-Upstate Binghamton Clinical Campus, Binghamton, NY, 13904, USA
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, The Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| |
Collapse
|
8
|
Hobin K, Costas-Rodríguez M, Van Wonterghem E, Vandenbroucke RE, Vanhaecke F. Alzheimer's Disease and Age-Related Changes in the Cu Isotopic Composition of Blood Plasma and Brain Tissues of the APP NL-G-F Murine Model Revealed by Multi-Collector ICP-Mass Spectrometry. BIOLOGY 2023; 12:857. [PMID: 37372142 DOI: 10.3390/biology12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's' disease (AD) is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles of tau protein in the brain. Aβ plaques are formed by the cleavage of the β-amyloid precursor protein (APP). In addition to protein aggregations, the metabolism of the essential mineral element Cu is also altered during the pathogenesis of AD. The concentration and the natural isotopic composition of Cu were investigated in blood plasma and multiple brain regions (brain stem, cerebellum, cortex, and hippocampus) of young (3-4 weeks) and aged (27-30 weeks) APPNL-G-F knock-in mice and wild-type controls to assess potential alterations associated with ageing and AD. Tandem inductively coupled plasma-mass spectrometry (ICP-MS/MS) was used for elemental analysis and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) for high-precision isotopic analysis. The blood plasma Cu concentration was significantly altered in response to both age- and AD-related effects, whereas the blood plasma Cu isotope ratio was only affected by the development of AD. Changes in the Cu isotopic signature of the cerebellum were significantly correlated with the changes observed in blood plasma. The brain stem showed a significant increase in Cu concentration for both young and aged AD transgenic mice compared with healthy controls, whereas the Cu isotopic signature became lighter as a result of age-related changes. In this work, ICP-MS/MS and MC-ICP-MS provided relevant and complementary information on the potential role of Cu in ageing and AD.
Collapse
Affiliation(s)
- Kasper Hobin
- Atomic & Mass Spectrometry-A&MS Research Unit, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Marta Costas-Rodríguez
- Atomic & Mass Spectrometry-A&MS Research Unit, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, Grupo QA2, 36310 Vigo, Spain
| | - Elien Van Wonterghem
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry-A&MS Research Unit, Department of Chemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Latina V, Atlante A, Malerba F, La Regina F, Balzamino BO, Micera A, Pignataro A, Stigliano E, Cavallaro S, Calissano P, Amadoro G. The Cleavage-Specific Tau 12A12mAb Exerts an Anti-Amyloidogenic Action by Modulating the Endocytic and Bioenergetic Pathways in Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24119683. [PMID: 37298634 DOI: 10.3390/ijms24119683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aβ) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aβ accumulation in AD neurodegeneration.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
10
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
11
|
Xicota L, Lagarde J, Eysert F, Grenier-Boley B, Rivals I, Botté A, Forlani S, Landron S, Gautier C, Gabriel C, Bottlaender M, Lambert JC, Chami M, Sarazin M, Potier MC. Modifications of the endosomal compartment in fibroblasts from sporadic Alzheimer's disease patients are associated with cognitive impairment. Transl Psychiatry 2023; 13:54. [PMID: 36788216 PMCID: PMC9929231 DOI: 10.1038/s41398-023-02355-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Morphological alterations of the endosomal compartment have been widely described in post-mortem brains from Alzheimer's disease (AD) patients and subjects with Down syndrome (DS) who are at high risk for AD. Immunostaining with antibodies against endosomal markers such as Early Endosome Antigen 1 (EEA1) revealed increased size of EEA1-positive puncta. In DS, peripheral cells such as peripheral blood mononuclear cells (PBMCs) and fibroblasts, share similar phenotype even in the absence of AD. We previously found that PBMCs from AD patients have larger EEA1-positive puncta, correlating with brain amyloid load. Here we analysed the endosomal compartment of fibroblasts from a very well characterised cohort of AD patients (IMABio3) who underwent thorough clinical, imaging and biomarkers assessments. Twenty-one subjects were included (7 AD with mild cognitive impairment (AD-MCI), 7 AD with dementia (AD-D) and 7 controls) who had amyloid-PET at baseline (PiB) and neuropsychological tests at baseline and close to skin biopsy. Fibroblasts isolated from skin biopsies were immunostained with anti-EEA1 antibody and imaged using a spinning disk microscope. Endosomal compartment ultrastructure was also analysed by electron microscopy. All fibroblast lines were genotyped and their AD risk factors identified. Our results show a trend to an increased EEA1-positive puncta volume in fibroblasts from AD-D as compared to controls (p.adj = 0.12) and reveal enhanced endosome area in fibroblasts from AD-MCI and AD-AD versus controls. Larger puncta size correlated with PiB retention in different brain areas and with worse cognitive scores at the time of biopsy as well as faster decline from baseline to the time of biopsy. Finally, we identified three genetic risk factors for AD (ABCA1, COX7C and MYO15A) that were associated with larger EEA1 puncta volume. In conclusion, the endosomal compartment in fibroblasts could be used as cellular peripheral biomarker for both amyloid deposition and cognitive decline in AD patients.
Collapse
Affiliation(s)
- Laura Xicota
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| | - Julien Lagarde
- grid.414435.30000 0001 2200 9055Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Cité, F-75006 Paris, France ,Université Paris-Saclay, BioMaps, Service Hospitalier Frederic Joliot CEA, CNRS, Inserm, F-91401 Orsay, France
| | - Fanny Eysert
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d’Azur, INSERM, CNRS, Sophia-Antipolis, F-06560 Valbonne, France
| | - Benjamin Grenier-Boley
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RIDAGE– Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Isabelle Rivals
- grid.440907.e0000 0004 1784 3645Equipe de Statistique Appliquée, ESPCI Paris, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, PSL Research University, Paris, France
| | - Alexandra Botté
- grid.411439.a0000 0001 2150 9058ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
| | - Sylvie Forlani
- grid.411439.a0000 0001 2150 9058ICM DNA and Cell Bank CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
| | - Sophie Landron
- Institut de Recherche Servier, 125 Chem. de Ronde, 78290 Croissy sur Seine, France
| | - Clément Gautier
- Institut de Recherche Servier, 125 Chem. de Ronde, 78290 Croissy sur Seine, France
| | - Cecilia Gabriel
- Institut de Recherche Servier, 125 Chem. de Ronde, 78290 Croissy sur Seine, France
| | - Michel Bottlaender
- grid.508487.60000 0004 7885 7602Université Paris Cité, F-75006 Paris, France ,grid.460789.40000 0004 4910 6535CEA, Neurospin, UNIACT, Paris Saclay University, 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Charles Lambert
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RIDAGE– Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Mounia Chami
- Institut of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d’Azur, INSERM, CNRS, Sophia-Antipolis, F-06560 Valbonne, France
| | - Marie Sarazin
- grid.414435.30000 0001 2200 9055Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Cité, F-75006 Paris, France ,Université Paris-Saclay, BioMaps, Service Hospitalier Frederic Joliot CEA, CNRS, Inserm, F-91401 Orsay, France
| | - Marie-Claude Potier
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
12
|
Insights of Endocytosis Signaling in Health and Disease. Int J Mol Sci 2023; 24:ijms24032971. [PMID: 36769293 PMCID: PMC9918140 DOI: 10.3390/ijms24032971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Endocytosis in mammalian cells is a fundamental cellular machinery that regulates vital physiological processes, such as the absorption of metabolites, release of neurotransmitters, uptake of hormone cellular defense, and delivery of biomolecules across the plasma membrane. A remarkable characteristic of the endocytic machinery is the sequential assembly of the complex proteins at the plasma membrane, followed by internalization and fusion of various biomolecules to different cellular compartments. In all eukaryotic cells, functional characterization of endocytic pathways is based on dynamics of the protein complex and signal transduction modules. To coordinate the assembly and functions of the numerous parts of the endocytic machinery, the endocytic proteins interact significantly within and between the modules. Clathrin-dependent and -independent endocytosis, caveolar pathway, and receptor mediated endocytosis have been attributed to a greater variety of physiological and pathophysiological roles such as, autophagy, metabolism, cell division, apoptosis, cellular defense, and intestinal permeabilization. Notably, any defect or alteration in the endocytic machinery results in the development of pathological consequences associated with human diseases such as cancer, cardiovascular diseases, neurological diseases, and inflammatory diseases. In this review, an in-depth endeavor has been made to illustrate the process of endocytosis, and associated mechanisms describing pathological manifestation associated with dysregulated endocytosis machinery.
Collapse
|
13
|
Muacevic A, Adler JR, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus 2023; 15:e34872. [PMID: 36788995 PMCID: PMC9922164 DOI: 10.7759/cureus.34872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.
Collapse
|
14
|
Xu Y, Vasiljevic E, Deming YK, Jonaitis EM, Koscik RL, Van Hulle CA, Lu Q, Carboni M, Kollmorgen G, Wild N, Carlsson CM, Johnson SC, Zetterberg H, Blennow K, Engelman CD. Effect of Pathway-Specific Polygenic Risk Scores for Alzheimer's Disease (AD) on Rate of Change in Cognitive Function and AD-Related Biomarkers Among Asymptomatic Individuals. J Alzheimers Dis 2023; 94:1587-1605. [PMID: 37482996 PMCID: PMC10468904 DOI: 10.3233/jad-230097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Genetic scores for late-onset Alzheimer's disease (LOAD) have been associated with preclinical cognitive decline and biomarker variations. Compared with an overall polygenic risk score (PRS), a pathway-specific PRS (p-PRS) may be more appropriate in predicting a specific biomarker or cognitive component underlying LOAD pathology earlier in the lifespan. OBJECTIVE In this study, we leveraged longitudinal data from the Wisconsin Registry for Alzheimer's Prevention and explored changing patterns in cognition and biomarkers at various age points along six biological pathways. METHODS PRS and p-PRSs with and without APOE were constructed separately based on the significant SNPs associated with LOAD in a recent genome-wide association study meta-analysis and compared to APOE alone. We used a linear mixed-effects model to assess the association between PRS/p-PRSs and cognitive trajectories among 1,175 individuals. We also applied the model to the outcomes of cerebrospinal fluid biomarkers in a subset. Replication analyses were performed in an independent sample. RESULTS We found p-PRSs and the overall PRS can predict preclinical changes in cognition and biomarkers. The effects of PRS/p-PRSs on rate of change in cognition, amyloid-β, and tau outcomes are dependent on age and appear earlier in the lifespan when APOE is included in these risk scores compared to when APOE is excluded. CONCLUSION In addition to APOE, the p-PRSs can predict age-dependent changes in amyloid-β, tau, and cognition. Once validated, they could be used to identify individuals with an elevated genetic risk of accumulating amyloid-β and tau, long before the onset of clinical symptoms.
Collapse
Affiliation(s)
- Yuexuan Xu
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Eva Vasiljevic
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, WI, USA
| | - Yuetiva K. Deming
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, WI, USA
| | - Erin M. Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, WI, USA
| | - Rebecca L. Koscik
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, WI, USA
| | - Carol A. Van Hulle
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | | | | | | | - Cynthia M. Carlsson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
15
|
Gollapalli P, Rao ASJ, Manjunatha H, Selvan GT, Shetty P, Kumari NS. Systems Pharmacology and Pharmacokinetics Strategy to Decode Bioactive Ingredients and Molecular Mechanisms from Zingiber officinale as Phyto-therapeutics against Neurological Diseases. Curr Drug Discov Technol 2023; 20:e250822207996. [PMID: 36028974 DOI: 10.2174/1570163819666220825141356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The bioactive constituents from Zingiber officinale (Z. officinale) have shown a positive effect on neurodegenerative diseases like Alzheimer's disease (AD), which manifests as progressive memory loss and cognitive impairment. OBJECTIVE This study investigates the binding ability and the pharmaco-therapeutic potential of Z. officinale with AD disease targets by molecular docking and molecular dynamic (MD) simulation approaches. METHODS By coupling enormous available phytochemical data and advanced computational technologies, the possible molecular mechanism of action of these bioactive compounds was deciphered by evaluating phytochemicals, target fishing, and network biological analysis. RESULTS As a result, 175 bioactive compounds and 264 human target proteins were identified. The gene ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis and molecular docking were used to predict the basis of vital bioactive compounds and biomolecular mechanisms involved in the treatment of AD. Amongst selected bioactive compounds, 10- Gingerdione and 1-dehydro-[8]-gingerdione exhibited significant anti-neurological properties against AD targeting amyloid precursor protein with docking energy of -6.0 and -5.6, respectively. CONCLUSION This study suggests that 10-Gingerdione and 1-dehydro-[8]-gingerdione strongly modulates the anti-neurological activity and are associated with pathological features like amyloid-β plaques and hyperphosphorylated tau protein are found to be critically regulated by these two target proteins. This comprehensive analysis provides a clue for further investigation of these natural compounds' inhibitory activity in drug discovery for AD treatment.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
- Center for Bioinformatics, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Aditya S J Rao
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore-570017, Karnataka, India
| | - Hanumanthappa Manjunatha
- Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Gnanasekaran Tamizh Selvan
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Nalilu Suchetha Kumari
- 1Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| |
Collapse
|
16
|
Heal M, McFall GP, Vergote D, Jhamandas JH, Westaway D, Dixon RA. Bridging Integrator 1 (BIN1, rs6733839) and Sex Are Moderators of Vascular Health Predictions of Memory Aging Trajectories. J Alzheimers Dis 2022; 89:265-281. [DOI: 10.3233/jad-220334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: A promising risk loci for sporadic Alzheimer’s disease (AD), Bridging Integrator 1 (BIN1), is thought to operate through the tau pathology pathway. Objective: We examine BIN1 risk for a moderating role with vascular health (pulse pressure; PP) and sex in predictions of episodic memory trajectories in asymptomatic aging adults. Methods: The sample included 623 participants (Baseline Mean age = 70.1; 66.8% female) covering a 44-year longitudinal band (53–97 years). With an established memory latent variable arrayed as individualized trajectories, we applied Mplus 8.5 to determine the best fitting longitudinal growth model. Main analyses were conducted in three sequential phases to investigate: 1) memory trajectory prediction by PP, 2) moderation by BIN1 genetic risk, and 3) stratification by sex. Results: We first confirmed that good vascular health (lower PP) was associated with higher memory level and shallower decline and males were more severely affected by worsening PP in both memory performance and longitudinal decline. Second, the PP prediction of memory trajectories was significant for BIN1 C/C and C/T carriers but not for persons with the highest AD risk (T/T homozygotes). Third, when further stratified by sex, the BIN1 moderation of memory prediction by PP was selective for females. Conclusion: We observed a novel interaction whereby BIN1 (linked with tauopathy in AD) and sex sequentially moderated a benchmark PP prediction of differential memory decline in asymptomatic aging. This multi-modal biomarker interaction approach, disaggregated by sex, can be an effective method for enhancing precision of AD genetic risk assessment.
Collapse
Affiliation(s)
- Mackenzie Heal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - G. Peggy McFall
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - David Vergote
- Faculté Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Jack H. Jhamandas
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Roger A. Dixon
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Zoungrana LI, Krause-Hauch M, Wang H, Fatmi MK, Bates L, Li Z, Kulkarni P, Ren D, Li J. The Interaction of mTOR and Nrf2 in Neurogenesis and Its Implication in Neurodegenerative Diseases. Cells 2022; 11:cells11132048. [PMID: 35805130 PMCID: PMC9265429 DOI: 10.3390/cells11132048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/24/2022] Open
Abstract
Neurogenesis occurs in the brain during embryonic development and throughout adulthood. Neurogenesis occurs in the hippocampus and under normal conditions and persists in two regions of the brain—the subgranular zone (SGZ) in the dentate gyrus of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles. As the critical role in neurogenesis, the neural stem cells have the capacity to differentiate into various cells and to self-renew. This process is controlled through different methods. The mammalian target of rapamycin (mTOR) controls cellular growth, cell proliferation, apoptosis, and autophagy. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of metabolism, protein quality control, and antioxidative defense, and is linked to neurogenesis. However, dysregulation in neurogenesis, mTOR, and Nrf2 activity have all been associated with neurodegenerative diseases such as Alzheimer’s, Huntington’s, and Parkinson’s. Understanding the role of these complexes in both neurogenesis and neurodegenerative disease could be necessary to develop future therapies. Here, we review both mTOR and Nrf2 complexes, their crosstalk and role in neurogenesis, and their implication in neurodegenerative diseases.
Collapse
Affiliation(s)
- Linda Ines Zoungrana
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.I.Z.); (M.K.-H.); (H.W.); (M.K.F.); (L.B.); (D.R.)
| | - Meredith Krause-Hauch
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.I.Z.); (M.K.-H.); (H.W.); (M.K.F.); (L.B.); (D.R.)
| | - Hao Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.I.Z.); (M.K.-H.); (H.W.); (M.K.F.); (L.B.); (D.R.)
| | - Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.I.Z.); (M.K.-H.); (H.W.); (M.K.F.); (L.B.); (D.R.)
| | - Lauryn Bates
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.I.Z.); (M.K.-H.); (H.W.); (M.K.F.); (L.B.); (D.R.)
| | - Zehui Li
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (Z.L.); (P.K.)
| | - Parth Kulkarni
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (Z.L.); (P.K.)
| | - Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.I.Z.); (M.K.-H.); (H.W.); (M.K.F.); (L.B.); (D.R.)
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (L.I.Z.); (M.K.-H.); (H.W.); (M.K.F.); (L.B.); (D.R.)
- Correspondence: ; Tel.: +1-813-974-4917
| |
Collapse
|
18
|
Wu H, Qiu W, Zhu X, Li X, Xie Z, Carreras I, Dedeoglu A, Van Dyke T, Han YW, Karimbux N, Tu Q, Cheng L, Chen J. The Periodontal Pathogen Fusobacterium nucleatum Exacerbates Alzheimer's Pathogenesis via Specific Pathways. Front Aging Neurosci 2022; 14:912709. [PMID: 35813949 PMCID: PMC9260256 DOI: 10.3389/fnagi.2022.912709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's Disease (AD) is the most common form of dementia in older adults and has a devastating impact on the patient's quality of life, which creates a significant socio-economic burden for the affected individuals and their families. In recent years, studies have identified a relationship between periodontitis and AD. Periodontitis is an infectious/inflammatory disease that destroys the supporting periodontal structure leading to tooth loss. Dysbiosis of the oral microbiome plays a significant role in the onset and development of periodontitis exhibiting a shift to overgrowth of pathobionts in the normal microflora with increasing local inflammation. Fusobacterium nucleatum is a common pathogen that significantly overgrows in periodontitis and has also been linked to various systemic diseases. Earlier studies have reported that antibodies to F. nucleatum can be detected in the serum of patients with AD or cognitive impairment, but a causal relationship and a plausible mechanism linking the two diseases have not been identified. In this study, we conducted both in vivo and in vitro experiments and found that F. nucleatum activates microglial cells causing morphological changes, accelerated proliferation and enhanced expression of TNF-α and IL-1β in microglial cells. In our in vivo experiments, we found that F. nucleatum-induced periodontitis resulted in the exacerbation of Alzheimer's symptoms in 5XFAD mice including increased cognitive impairment, beta-amyloid accumulation and Tau protein phosphorylation in the mouse cerebrum. This study may suggest a possible link between a periodontal pathogen and AD and F. nucleatum could be a risk factor in the pathogenesis of AD. We are currently further identifying the pathways through which F. nucleatum modulates molecular elements in enhancing AD symptoms and signs. Data are available via ProteomeXchange with identifier PXD033147.
Collapse
Affiliation(s)
- Hongle Wu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Xiangfen Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Isabel Carreras
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, MA, United States
- Department of Neurology and Department of Biochemistry School of Medicine, Boston University, Boston, MA, United States
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System, Boston, MA, United States
- Department of Neurology School of Medicine, Boston University, Boston, MA, United States
| | - Thomas Van Dyke
- The Forsyth Institute, Clinical and Translational Research, Cambridge, MA, United States
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Yiping W. Han
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, University Irvign Medical Center, New York, NY, United States
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irvign Medical Center, New York, NY, United States
| | - Nadeem Karimbux
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Lei Cheng
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| |
Collapse
|
19
|
Bellou E, Escott-Price V. Are Alzheimer's and coronary artery diseases genetically related to longevity? Front Psychiatry 2022; 13:1102347. [PMID: 36684006 PMCID: PMC9859055 DOI: 10.3389/fpsyt.2022.1102347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION In the last decade researchers have attempted to investigate the shared genetic architecture of longevity and age-related diseases and assess whether the increased longevity in certain people is due to protective alleles in the risk genes for a particular condition or whether there are specific "longevity" genes increasing the lifespan independently of age-related conditions' risk genes. The aim of this study was to investigate the shared genetic component between longevity and two age-related conditions. METHODS We performed a cross-trait meta-analysis of publicly available genome-wide data for Alzheimer's disease, coronary artery disease and longevity using a subset-based approach provided by the R package ASSET. RESULTS Despite the lack of strong genetic correlation between longevity and the two diseases, we identified 38 genome-wide significant lead SNPs across 22 independent genomic loci. Of them 6 were found to be potentially shared among the three traits mapping to genes including DAB2IP, DNM2, FCHO1, CLPTM1, and SNRPD2. We also identified 19 novel genome-wide associations for the individual traits in this study. Functional annotations and biological pathway enrichment analyses suggested that pleiotropic variants are involved in clathrin-mediated endocytosis and plasma lipoprotein and neurotransmitter clearance processes. DISCUSSION In summary, we have been able to advance in the knowledge of the genetic overlap existing among longevity and the two most common age-related disorders.
Collapse
Affiliation(s)
- Eftychia Bellou
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|