1
|
Chiapperino L. Enacting biosocial complexity: Stress, epigenetic biomarkers and the tools of postgenomics. SOCIAL STUDIES OF SCIENCE 2024; 54:598-625. [PMID: 38214449 PMCID: PMC11409560 DOI: 10.1177/03063127231222613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This article analyses attempts to enact complexity in postgenomic experimentations using the case of epigenetic research on biomarkers of psychosocial stress. Enacting complexity in this research means dissecting multiple so-called biosocial processes of health differentiation in the face of stressful experiences. To characterize enactments of biosocial complexity, the article develops the concepts of complexity work and complexification. The former emphasizes the social, technical, and material work that goes into the production of mixed biological and social representations of stress in epigenetics. The latter underlines how complexity can be assembled differently across distinct configurations of experimental work. Specifically, complexification can be defined as producing, stabilizing, and normalizing novel experimental systems that are supposed to improve techno-scientific enactments of complexity. In the case of epigenetics, complexification entails a reconfiguration of postgenomic experimental systems in ways that some actors deem 'better' at enacting health as a biosocial process. This study of complexity work and complexification shows that biosocial complexity is hardly a univocal enterprise in epigenetics. Consequently, the article calls for abandoning analysis of these research practices using clear-cut dichotomies of reductionism vs. holism, as well as simplicity vs. complexity. More broadly, the article suggests the relevance of a sociology of complexification for STS approaches to complexity in scientific practices. Complementing the existing focus on complexity as instrumental rhetoric in contemporary sciences, complexification directs analytical attention to the pragmatic opportunities that alternative (biosocial) complexities offer to collective, societal, and political thinking about science in society.
Collapse
|
2
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Coda DM, Gräff J. From cellular to fear memory: An epigenetic toolbox to remember. Curr Opin Neurobiol 2024; 84:102829. [PMID: 38128422 DOI: 10.1016/j.conb.2023.102829] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Throughout development, the neuronal epigenome is highly sensitive to external stimuli, yet capable of safeguarding cellular memory for a lifetime. In the adult brain, memories of fearful experiences are rapidly instantiated, yet can last for decades, but the mechanisms underlying such longevity remain unknown. Here, we showcase how fear memory formation and storage - traditionally thought to exclusively affect synapse-based events - elicit profound and enduring changes to the chromatin, proposing epigenetic regulation as a plausible molecular template for mnemonic processes. By comparing these to mechanisms occurring in development and differentiation, we notice that an epigenetic machinery similar to that preserving cellular memories might be employed by brain cells so as to form, store, and retrieve behavioral memories.
Collapse
Affiliation(s)
- Davide Martino Coda
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
5
|
Domingos LB, Silva NR, Chaves Filho AJM, Sales AJ, Starnawska A, Joca S. Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models. Genes (Basel) 2022; 13:2165. [PMID: 36421839 PMCID: PMC9690868 DOI: 10.3390/genes13112165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes, transporters and ion channels. However, the precise contribution of each of those mechanisms for CBD effects is still not yet completely understood. Considering that epigenetic changes make the bridge between gene expression and environment interactions, we review and discuss herein how CBD affects one of the main epigenetic mechanisms associated with the development of stress-related psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-mediated signaling. The implications of this new potential pharmacological target for CBD are discussed in light of its therapeutic and neurodevelopmental effects.
Collapse
Affiliation(s)
- Luana B. Domingos
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Nicole R. Silva
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adriano J. M. Chaves Filho
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Amanda J. Sales
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Lawson-Boyd E, Meloni M. Gender Beneath the Skull: Agency, Trauma and Persisting Stereotypes in Neuroepigenetics. Front Hum Neurosci 2021; 15:667896. [PMID: 34211381 PMCID: PMC8239152 DOI: 10.3389/fnhum.2021.667896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetics stands in a complex relationship to issues of sex and gender. As a scientific field, it has been heavily criticized for disproportionately targeting the maternal body and reproducing deterministic views of biological sex (Kenney and Müller, 2017; Lappé, 2018; Richardson et al., 2014). And yet, it also represents the culmination of a long tradition of engaging with developmental biology as a feminist cause, because of the dispersal of the supposed 'master code' of DNA among wider cellular, organismic and ecological contexts (Keller, 1988). In this paper, we explore a number of tensions at the intersection of sex, gender and trauma that are playing out in the emerging area of neuroepigenetics - a relatively new subfield of epigenetics specifically interested in environment-brain relations through epigenetic modifications in neurons. Using qualitative interviews with leading scientists, we explore how trauma is conceptualized in neuroepigenetics, paying attention to its gendered dimensions. We address a number of concerns raised by feminist STS researchers in regard to epigenetics, and illustrate why we believe close engagement with neuroepigenetic claims, and neuroepigenetic researchers themselves, is a crucial step for social scientists interested in questions of embodiment and trauma. We argue this for three reasons: (1) Neuroepigenetic studies are recognizing the agential capacities of biological materials such as genes, neurotransmitters and methyl groups, and how they influence memory formation; (2) Neuroepigenetic conceptions of trauma are yet to be robustly coupled with social and anthropological theories of violence (Eliot, 2021; Nelson, 2021; Walby, 2013); (3) In spite of the gendered assumptions we find in neuroepigenetics, there are fruitful spaces - through collaboration - to be conceptualizing gender beyond culture-biology and nature-nurture binaries (Lock and Nguyen, 2010). To borrow Gravlee's (2009: 51) phrase, we find reason for social scientists to consider how gender is not only constructed, but how it may "become biology" via epigenetic and other biological pathways. Ultimately, we argue that a robust epigenetic methodology is one which values the integrity of expertise outside its own field, and can have an open, not empty mind to cross-disciplinary dialogue.
Collapse
Affiliation(s)
- Elsher Lawson-Boyd
- Alfred Deakin Institute for Citizenship and Globalisation, Deakin University, Burwood, VIC, Australia
| | - Maurizio Meloni
- Alfred Deakin Institute for Citizenship and Globalisation, Deakin University, Burwood, VIC, Australia
| |
Collapse
|