1
|
da Rocha MJ, Presa MH, Nunes GD, Zuge NP, Pires CS, Besckow EM, Gomes CS, Dapper LH, Lenardão EJ, Penteado F, Bortolatto CF, Brüning CA. 1-(Phenylselanyl)-2-(p-tolyl)indolizine: A selenoindolizine with potential antidepressant-like activity in mice mediated by the modulation of dopaminergic and noradrenergic systems. Brain Res 2024; 1834:148904. [PMID: 38561086 DOI: 10.1016/j.brainres.2024.148904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective β receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and β1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.
Collapse
Affiliation(s)
- Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Gustavo D'Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Caroline Signorini Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Luiz Henrique Dapper
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Graduate Program in Chemistry (PPGQ), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil
| | - Filipe Penteado
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010‑900, Brazil.
| |
Collapse
|
2
|
Xu LH, Ge JG, Xiao SF, Lu QC, Ji W, Ma YQ, Song JY, Zhang XY, Cai ML, Li X, Zhou X, Jiang ZL. Atrial Natriuretic Peptide Alleviates Motion Sickness Potentially through Regulating Endolymph Volume in the Inner Ear Increased by Arginine Vasopressin. Neuroendocrinology 2024; 114:786-798. [PMID: 38815558 DOI: 10.1159/000539586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Dimenhydrinate and scopolamine are frequently used drugs, but they cause drowsiness and performance decrement. Therefore, it is crucial to find peripheral targets and develop new drugs without central side effects. This study aimed to investigate the anti-motion sickness action and inner ear-related mechanisms of atrial natriuretic peptide (ANP). METHODS Endolymph volume in the inner ear was measured with magnetic resonance imaging and expression of AQP2 and p-AQP2 was detected with Western blot analysis and immunofluorescence method. RESULTS Both rotational stimulus and intraperitoneal arginine vasopressin (AVP) injection induced conditioned taste aversion (CTA) to 0.15% sodium saccharin solution and an increase in the endolymph volume of the inner ear. However, intraperitoneal injection of ANP effectively alleviated the CTA behaviour and reduced the increase in the endolymph volume after rotational stimulus. Intratympanic injection of ANP also inhibited rotational stimulus-induced CTA behaviour, but anantin peptide, an inhibitor of ANP receptor A (NPR-A), blocked this inhibitory effect of ANP. Both rotational stimulus and intraperitoneal AVP injection increased the expression of AQP2 and p-AQP2 in the inner ear of rats, but these increases were blunted by ANP injection. In in vitro experiments, ANP addition decreased AVP-induced increases in the expression and phosphorylation of AQP2 in cultured endolymphatic sac epithelial cells. CONCLUSION Therefore, the present study suggests that ANP could alleviate motion sickness through regulating endolymph volume of the inner ear increased by AVP, and this action of ANP is potentially mediated by activating NPR-A and antagonising the increasing effect of AVP on AQP2 expression and phosphorylation.
Collapse
Affiliation(s)
- Li-Hua Xu
- Department of Nautical and Diving Medicine, Institute of Nautical Medicine, Institute of Special Environmental Medicine, Medical School, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jian-Gang Ge
- Department of Radiology, The Second People's Hospital of Nantong and Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Shui-Feng Xiao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Naval Medical University, Shanghai, China
| | - Qian-Cheng Lu
- Department of Nautical and Diving Medicine, Institute of Nautical Medicine, Institute of Special Environmental Medicine, Medical School, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Ji
- Department of Radiology, The Second People's Hospital of Nantong and Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Yong-Qin Ma
- Department of Nautical and Diving Medicine, Institute of Nautical Medicine, Institute of Special Environmental Medicine, Medical School, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jia-Yun Song
- Department of Nautical and Diving Medicine, Institute of Nautical Medicine, Institute of Special Environmental Medicine, Medical School, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiao-Yi Zhang
- Department of Nautical and Diving Medicine, Institute of Nautical Medicine, Institute of Special Environmental Medicine, Medical School, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ming-Liang Cai
- Department of Nautical and Diving Medicine, Institute of Nautical Medicine, Institute of Special Environmental Medicine, Medical School, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xia Li
- Department of Nautical and Diving Medicine, Institute of Nautical Medicine, Institute of Special Environmental Medicine, Medical School, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Zhou
- School of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Zheng-Lin Jiang
- Department of Nautical and Diving Medicine, Institute of Nautical Medicine, Institute of Special Environmental Medicine, Medical School, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|