1
|
Jin X, Zhao X. Identification of immune-related biomarkers and immune infiltrations of intracranial aneurysm with subarachnoid hemorrhage by machine-learning strategies. Comput Methods Biomech Biomed Engin 2025:1-13. [PMID: 40267124 DOI: 10.1080/10255842.2025.2495250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/22/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
Background: Subarachnoid hemorrhage (SAH) risk increases with intracranial aneurysms (IA), but their relationship remains unclear. Methods: We explored SAH-IA links using machine learning and bioinformatics, identifying 66 IA-related SAH genes. KEGG analysis highlighted pathways like NF-κB, TNF, and COVID-19. Results: Two immune-related genes (ZNF281, LRRN3) were identified, and a ceRNA network was constructed. Ten potential SAH-IA drugs were screened via CMAP. Conclusion: ZNF281 and LRRN3 may regulate immune pathways (T cells, NK cells, macrophages), influencing IA-related SAH development, and could serve as therapeutic targets.
Collapse
Affiliation(s)
- Xiao Jin
- The Personnel Department, Dongfang Hospital, Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Liu Y, Zhang Y, Wei H, Wang L, Liao L. Exploring the molecular mechanisms of subarachnoid hemorrhage and potential therapeutic targets: insights from bioinformatics and drug prediction. Sci Rep 2025; 15:12861. [PMID: 40229542 PMCID: PMC11997208 DOI: 10.1038/s41598-025-97642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Subarachnoid hemorrhage (SAH) is a fatal pathological condition in the central nervous system (CNS), characterized by severe clinical consequences. Its treatment remains a significant challenge, especially due to the incomplete understanding of its molecular mechanisms. In this study, we integrated comprehensive bioinformatics analyses with experimental validation to explore the potential pathogenic mechanisms and immune cell infiltration characteristics of SAH, aiming to identify novel diagnostic biomarkers and therapeutic targets. We selected relevant gene expression data from the gene expression omnibus (GEO) database and obtained a gene set associated with SAH from the GeneCards database. Through bioinformatics analysis, we constructed a protein-protein interaction (PPI) network and performed functional enrichment analysis using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. The analysis revealed 11 key genes and indicated 3 main signaling pathways. Additionally, Drug target prediction and molecular docking analyses revealed that Isorhynchophylline (IRN) exhibits a strong binding affinity to these hub proteins. Importantly, Western blot (WB) experiments confirmed that IRN significantly downregulates the expression of CCL20, IL6, TLR4, and MMP9 in LPS-induced microglial cells, validating its anti-inflammatory effects. In conclusion, our findings not only elucidate the molecular mechanisms underlying SAH but also provide robust bioinformatics and experimental evidence supporting IRN as a promising therapeutic candidate, offering novel insights for future intervention strategies in SAH.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yang Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Huan Wei
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Department of Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Feng Y, Zhang H, Dai S, Li X. Aspirin treatment for unruptured intracranial aneurysms: Focusing on its anti-inflammatory role. Heliyon 2024; 10:e29119. [PMID: 38617958 PMCID: PMC11015424 DOI: 10.1016/j.heliyon.2024.e29119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024] Open
Abstract
Intracranial aneurysms (IAs), as a common cerebrovascular disease, claims a worldwide morbidity rate of 3.2%. Inflammation, pivotal in the pathogenesis of IAs, influences their formation, growth, and rupture. This review investigates aspirin's modulation of inflammatory pathways within this context. With IAs carrying significant morbidity and mortality upon IAs rupture and current interventions limited to surgical clipping and endovascular coiling, the quest for pharmacological options is imperative. Aspirin's role in cardiovascular prevention, due to its anti-inflammatory effects, presents a potential therapeutic avenue for IAs. In this review, we examine aspirin's efficacy in experimental models and clinical settings, highlighting its impact on the progression and rupture risks of unruptured IAs. The underlying mechanisms of aspirin's impact on IAs are explored, with its ability examined to attenuate endothelial dysfunction and vascular injury. This review may provide a theoretical basis for the use of aspirin, suggesting a promising strategy for IAs management. However, the optimal dosing, safety, and long-term efficacy remain to be established. The implications of aspirin therapy are significant in light of current surgical and endovascular treatments. Further research is encouraged to refine aspirin's clinical application in the management of unruptured IAs, with the ultimate aim of reducing the incidence of aneurysms rupture.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Wang J, Wang L, Wu Q, Cai Y, Cui C, Yang M, Sun B, Mao L, Wang Y. Interleukin-4 Modulates Neuroinflammation by Inducing Phenotypic Transformation of Microglia Following Subarachnoid Hemorrhage. Inflammation 2024; 47:390-403. [PMID: 37898992 PMCID: PMC10799105 DOI: 10.1007/s10753-023-01917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Neuroinflammation, a key pathological feature following subarachnoid hemorrhage (SAH), can be therapeutically targeted by inhibiting microglia M1 polarization and promoting phenotypic transformation to M2 microglia. Interleukin-4 (IL-4) is a pleiotropic cytokine known to its regulation of physiological functions of the central nervous system (CNS) and mediate neuroinflammatory processes. However, its specific role in neuroinflammation and microglia responses following SAH remains unexplored. In this investigation, we established both in vivo and in vitro SAH models and employed a comprehensive array of assessments, including ELISA, neurofunctional profiling, immunofluorescence staining, qRT-PCR, determination of phagocytic capacity, and RNA-Seq analyses. The findings demonstrate an elevated expression of IL-4 within cerebrospinal fluid (CSF) subsequent to SAH. Furthermore, exogenous administration of IL-4 ameliorates post-SAH neurofunctional deficits, attenuates cellular apoptosis, fosters M2 microglia phenotype conversion, and mitigates neuroinflammatory responses. The RNA-Seq analysis signifies that IL-4 governs the modulation of neuroinflammation in microglia within an in vitro SAH model through intricate cascades of signaling pathways, encompassing interactions between cytokines and cytokine receptors. These discoveries not only augment comprehension of the neuropathogenesis associated with post-SAH neuroinflammation but also present novel therapeutic targets for the management thereof.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Lili Wang
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province, 272011, China
| | - Yichen Cai
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China
| | - Chengfu Cui
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Ming Yang
- Department of Ultrasonic Diagnosis and Treatment, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Baoliang Sun
- Medical College of Qingdao University, Qingdao, Shandong, 266021, China.
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Leilei Mao
- Institute for Neurological Research, School of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical Sciences, The Second Affiliated Hospital, Taian, Shandong, 271000, China.
| | - Yuan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
5
|
Luo X. CXCR2 antagonism attenuates neuroinflammation after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 2023; 32:107266. [PMID: 37481938 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES Overactivation of neuroinflammation can worsen the prognosis of subarachnoid hemorrhage (SAH) patients. CXCR2 is a widely expressed G protein-coupled receptor that participates in the regulation of inflammation, indicating a potential role of CXCR2 in SAH. MATERIALS AND METHODS Herein, we examined the expression pattern of CXCR2 in the ipsilateral brain tissue of SAH mice. Then, we evaluated the effects of CXCR2 antagonist on neuroinflammation and neurological function after SAH. RESULTS Western blotting and immunohistochemistry revealed that CXCR2 expression was upregulated following SAH. Our results demonstrated that treatment with SB225002 inhibited inflammatory cytokine (IL-1β, IL-6, TNF-α, MCP-1) production in the brain and cerebrospinal fluid (CSF) following SAH. Our further findings confirmed that treatment with SB225002 ameliorated astrocytosis and microgliosis after SAH. Interestingly, SB225002 significantly improved neurological impairment after SAH. CONCLUSIONS Altogether, these results suggest that pharmacologically targeting CXCR2 may be an effective disease-modifying treatment for SAH.
Collapse
Affiliation(s)
- Xiaolin Luo
- Department of Neurosurgery, Chengdu Second People's Hospital, No. 10, Qingyun South Street, Chengdu 610021, Sichuan, China.
| |
Collapse
|
6
|
Ji X, Pei Q, Zhang J, Lin P, Li B, Yin H, Sun J, Su D, Qu X, Yin D. Single-cell sequencing combined with machine learning reveals the mechanism of interaction between epilepsy and stress cardiomyopathy. Front Immunol 2023; 14:1078731. [PMID: 36776884 PMCID: PMC9911815 DOI: 10.3389/fimmu.2023.1078731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Background Epilepsy is a disorder that can manifest as abnormalities in neurological or physical function. Stress cardiomyopathy is closely associated with neurological stimulation. However, the mechanisms underlying the interrelationship between epilepsy and stress cardiomyopathy are unclear. This paper aims to explore the genetic features and potential molecular mechanisms shared in epilepsy and stress cardiomyopathy. Methods By analyzing the epilepsy dataset and stress cardiomyopathy dataset separately, the intersection of the two disease co-expressed differential genes is obtained, the co-expressed differential genes reveal the biological functions, the network is constructed, and the core modules are identified to reveal the interaction mechanism, the co-expressed genes with diagnostic validity are screened by machine learning algorithms, and the co-expressed genes are validated in parallel on the epilepsy single-cell data and the stress cardiomyopathy rat model. Results Epilepsy causes stress cardiomyopathy, and its key pathways are Complement and coagulation cascades, HIF-1 signaling pathway, its key co-expressed genes include SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3. The key immune cell subpopulations localized by single-cell data are the T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup. Conclusion We believe epilepsy causing stress cardiomyopathy results from a multi-gene, multi-pathway combination. We identified the core co-expressed genes (SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3) and the pathways that function in them (Complement and coagulation cascades, HIF-1 signaling pathway, JAK-STAT signaling pathway), and finally localized their key cellular subgroups (T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup). Also, combining cell subpopulations with hypercoagulability as well as sympathetic excitation further narrowed the cell subpopulations of related functions.
Collapse
Affiliation(s)
- Xuanrui Ji
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Quanwei Pei
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junpei Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengqi Lin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongpeng Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingmei Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dezhan Su
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Wang X, Wen D, You C, Tao C, Ma L. Comprehensive analysis of immune cell infiltration and role of MSR1 expression in aneurysmal subarachnoid haemorrhage. Cell Prolif 2022:e13379. [PMID: 36515067 DOI: 10.1111/cpr.13379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhage (aSAH), resulting from the rupture of intracranial aneurysms, can yield high mortality and disability. This study aimed to explore the immune infiltration of aneurysmal tissues and investigate a novel mechanism underlying aSAH. We downloaded datasets containing expression profiles of aneurysmal and normal arterial tissues from the online database. Then a comprehensive bioinformatic strategy was conducted to select the biomarkers of aneurysmal tissues. Two calculation algorithms were performed to identify the unique immune characteristics between aneurysmal tissues and normal arteries. Double immunofluorescence staining was used to investigate the role of pathway-related proteins in the inflammatory process after aSAH. Six microarray datasets were integrated, and another RNA-sequencing dataset was used as the validation dataset. Functional enrichment analysis of the differentially expressed genes indicated that immune-related processes were closely related to the progression of aSAH. We then performed immune microenvironment infiltration analysis, and the results suggested macrophages were abnormally enriched in aneurysmal tissues. Core gene MSR1 was filtered through a comprehensive bioinformatic strategy. Our analysis suggested that MSR1 might be associated with macrophage activation and migration. Our study elucidated the impact of macrophage and MSR1 on aSAH progression. These findings were helpful in gaining insight into the immune heterogeneity of aneurysmal tissues and normal arteries, and in identifying patients who might benefit from immunotherapy.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dingke Wen
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Centre, Sichuan University, Chengdu, Sichuan, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Ma
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|