1
|
Sullivan KR, Ravens A, Walker AC, Shepherd JD. "Arc - A viral vector of memory and synaptic plasticity". Curr Opin Neurobiol 2025; 91:102979. [PMID: 39956025 PMCID: PMC11938376 DOI: 10.1016/j.conb.2025.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 02/18/2025]
Abstract
Learning induces gene expression and memory consolidation requires new protein synthesis. Many of these activity-induced genes are transcription factors. One of the exceptions is a key immediate early gene, Arc, which has been implicated in several forms of synaptic plasticity and is critical for long-term memory formation. Recently, Arc was discovered to have retroviral properties, such as the ability to form virus-like capsids, that were repurposed from an ancient retrotransposon. Arc capsids are released in extracellular vesicles that mediate intercellular communication. Here, we review Arc's role in synaptic plasticity and propose a model for how Arc mediates memory consolidation via a novel intercellular non-cell autonomous form of long-term depression.
Collapse
Affiliation(s)
| | - Alicia Ravens
- Department of Neurobiology, University of Utah, United States
| | - Alicia C Walker
- Department of Neurobiology, University of Utah, United States
| | | |
Collapse
|
2
|
Tyagi M, Chadha R, de Hoog E, Sullivan KR, Walker AC, Northrop A, Fabian B, Fuxreiter M, Hyman BT, Shepherd JD. Arc mediates intercellular tau transmission via extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619703. [PMID: 39484489 PMCID: PMC11526995 DOI: 10.1101/2024.10.22.619703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular neurofibrillary tangles that consist of misfolded tau protein1 cause neurodegeneration in Alzheimer's disease (AD) and frontotemporal dementia (FTD). Tau pathology spreads cell-to-cell2 but the exact mechanisms of tau release and intercellular transmission remain poorly defined. Tau is released from neurons as free protein or in extracellular vesicles (EVs)3-5 but the role of these different release mechanisms in intercellular tau transmission is unclear. Here, we show that the neuronal gene Arc is critical for packaging tau into EVs. Brain EVs purified from human tau (hTau) transgenic rTg4510 mice (rTgWT) contain high levels of hTau that are capable of seeding tau pathology. In contrast, EVs purified from rTgWT crossed with Arc knock-out mice (rTgArc KO) have significantly less hTau and cannot seed tau aggregation. Arc facilitates the release of hTau in EVs produced via the I-BAR protein IRSp53, but not free tau. Arc protein directly binds hTau to form a fuzzy complex that we identified in both mouse and human brain tissue. We find that pathological intracellular hTau accumulates in neurons in rTgArc KO mice, which correlates with accelerated neuron loss in the hippocampus. Finally, we find that intercellular tau transmission is significantly abrogated in Arc KO mice. We conclude that Arc-dependent release of tau in EVs plays a significant role in intracellular tau elimination and intercellular tau transmission.
Collapse
Affiliation(s)
- Mitali Tyagi
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Eric de Hoog
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | | | - Alicia C. Walker
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Ava Northrop
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Balazs Fabian
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Germany
| | - Monika Fuxreiter
- Department of Biomedical Sciences University of Padova, Padova, Italy
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
3
|
Mehta K, Yentsch H, Lee J, Yook Y, Lee KY, Gao TT, Tsai NP, Zhang K. Phosphatidylinositol-3-phosphate mediates Arc capsid secretion through the multivesicular body pathway. Proc Natl Acad Sci U S A 2024; 121:e2322422121. [PMID: 39178227 PMCID: PMC11363301 DOI: 10.1073/pnas.2322422121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag) protein and mediates the intercellular RNA transfer through virus-like capsids. However, the regulators and secretion pathway through which Arc capsids maneuver cargos are unclear. Here, we identified that phosphatidylinositol-3-phosphate (PI3P) mediates Arc capsid assembly and secretion through the endosomal-multivesicular body (MVB) pathway. Indeed, reconstituted Arc protein preferably binds to PI3P. In HEK293T cells, Arc forms puncta that colocalize with FYVE, an endosomal PI3P marker, as well as Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces the Arc-mediated RNA transfer efficiency. RalA/B double knockdown in cultured rat cortical neurons increases the percentage of mature dendritic spines. Intake of extracellular vesicles purified from Arc-expressing wild-type, but not RalA/B double knockdown, cells in mouse cortical neurons reduces their surface GlutA1 levels. These results suggest that unlike the HIV Gag, whose membrane targeting requires interaction with plasma-membrane-specific phosphatidyl inositol (4,5) bisphosphate (PI(4,5)P2), the assembly of Arc capsids is mediated by PI3P at endocytic membranes. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.
Collapse
Affiliation(s)
- Kritika Mehta
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- NSF Science and Technology Center for Quantitative Cell Biology (STC-QCB) Center, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Henry Yentsch
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Jungbin Lee
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yeeun Yook
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Tianyu Terry Gao
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Kai Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- NSF Science and Technology Center for Quantitative Cell Biology (STC-QCB) Center, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801
- Neuroscience Program, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
4
|
Meldolesi J. Specific Extracellular Vesicles, Generated and Operating at Synapses, Contribute to Neuronal Effects and Signaling. Int J Mol Sci 2024; 25:5103. [PMID: 38791143 PMCID: PMC11121580 DOI: 10.3390/ijms25105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
In all cell types, small EVs, very abundant extracellular vesicles, are generated and accumulated within MVB endocytic cisternae. Upon MVB fusion and exocytosis with the plasma membrane, the EVs are released to the extracellular space. In the central nervous system, the release of neuronal EVs was believed to occur only from the surface of the body and dendrites. About 15 years ago, MVB cisternae and EVs were shown to exist and function at synaptic boutons, the terminals' pre- and post-synaptic structures essential for canonical neurotransmitter release. Recent studies have revealed that synaptic EVs are peculiar in many respects and heterogeneous with respect to other neuronal EVs. The distribution of synaptic EVs and the effect of their specific molecules are found at critical sites of their distribution. The role of synaptic EVs could consist of the modulation of canonical neurotransmitter release or a distinct, non-canonical form of neurotransmission. Additional roles of synaptic EVs are still not completely known. In the future, additional investigations will clarify the role of synaptic EVs in pathology, concerning, for example, circuits, trans-synaptic transmission, diagnosis and the therapy of diseases.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20129 Milan, Italy;
- CNR Institute of Neuroscience, Milano-Bicocca University, 20854 Vedano al Lambro, Italy
| |
Collapse
|
5
|
Mehta K, Yentsch H, Lee J, Gao TT, Zhang K. Phosphatidylinositol 3-phosphate mediates Arc capsids secretion through the multivesicular body pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572392. [PMID: 38187623 PMCID: PMC10769229 DOI: 10.1101/2023.12.19.572392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. The recent discovery that Arc mediates the inter-neuronal RNA transfer implies its role in regulating neuronal functions across long distances. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag). By assembling into high-order, virus-like capsids, Arc mediates the intercellular RNA transfer. However, the exact secretion pathway through which Arc capsids maneuver cargos is unclear. Here, we identified that Arc capsids assemble and secrete through the endosomal-multivesicular body (MVB) pathway. Arc's endosomal entry is likely mediated by phosphatidylinositol-3-phosphate (PI3P). Indeed, reconstituted Arc protein preferably binds to PI3P. In mammalian cells, Arc forms puncta that colocalizes with FYVE, an endosomal PI3P marker, and competitive binding to PI3P via prolonged FYVE expression reduces the average number of Arc puncta per cell. Overexpression of MTMR1, a PI3P phosphatase, significantly reduces Arc capsid secretion. Arc capsids secrete through the endosomal-MVB axis as extracellular vesicles. Live-cell imaging shows that fluorescently labeled Arc primarily colocalizes Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces Arc-mediated RNA transfer efficiency. These results suggest that, unlike the Human Immunodeficiency Virus Gag, which assembles on and bud off from the plasma membrane, Arc capsids assemble at the endocytic membranes of the endosomal-MVB pathway mediated by PI3P. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.
Collapse
|