1
|
Mount KA, Kuhn HM, Hwang EK, Beutler MM, Wolf ME. Incubation of oxycodone craving is associated with CP-AMPAR upregulation in D1 and D2 receptor-expressing medium spiny neurons in nucleus accumbens core and shell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.06.647399. [PMID: 40236121 PMCID: PMC11996497 DOI: 10.1101/2025.04.06.647399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A major problem in treating opioid use disorder is persistence of craving after protracted abstinence. This has been modeled in rodents using the incubation of craving model, in which cue-induced drug seeking increases over the first weeks of abstinence from drug self-administration and then remains high for an extended period. Incubation has been reported for several opioids, including oxycodone, but little is known about underlying synaptic plasticity. In contrast, it is well established that incubation of cocaine and methamphetamine craving depends on strengthening of glutamate synapses in the nucleus accumbens (NAc) through incorporation of calcium-permeable AMPARs (CP-AMPARs). CP-AMPARs have higher conductance than the calcium-impermeable AMPARs that mediate NAc excitatory transmission in drug-naïve animals, as well as other distinct properties. Here we examined AMPAR transmission in medium spiny neurons (MSN) of NAc core and shell subregions in rats during forced abstinence from extended-access oxycodone self-administration. In early abstinence (prior to incubation), CP-AMPAR levels were low. After 17-33 days of abstinence (when incubation is stably plateaued), CP-AMPAR levels were significantly elevated in both subregions. These results explain the prior demonstration that infusion of a selective CP-AMPAR antagonist into NAc core or shell subregions prevents expression of oxycodone incubation. Then, using transgenic rats, we found CP-AMPAR upregulation on both D1 and D2 receptor-expressing MSN, which contrasts with selective upregulation on D1 MSN after cocaine and methamphetamine incubation. Overall, our results demonstrate a common role for CP-AMPAR upregulation in psychostimulant and oxycodone incubation, albeit with differences in MSN subtype-specificity.
Collapse
|
2
|
Weber SJ, Driscoll GS, Beutler MM, Kuhn HM, Westlake JG, Wolf ME. Dopamine and calcium dynamics in the nucleus accumbens core during food seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642710. [PMID: 40161628 PMCID: PMC11952458 DOI: 10.1101/2025.03.11.642710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Extinction-reinstatement paradigms have been used to study reward seeking for both food and drug rewards. The nucleus accumbens is of particular interest in reinstatement due to its ability to energize motivated behavior. Indeed, previous work has demonstrated that suppression of neuronal activity or dopaminergic signaling in the nucleus accumbens reduces reinstatement to food seeking. In this study, we sought to further establish a connection between glutamatergic input, measured by proxy via a genetically encoded calcium indicator, and dopamine (DA) tone, measured simultaneously with a red-shifted DA biosensor. We performed this sensor multiplexing in the nucleus accumbens core in the classic extinction-reinstatement paradigm with food reward. We detected DA transients that changed in magnitude and/or temporally shifted over the course of self-administration training. In our calcium traces we observed a decrease from baseline time-locked to the lever press for food reward, which became more prominent with training. Both patterns were reduced in the first session of extinction with no deflections from baseline detected in either the DA or calcium traces in the last extinction session. When we recorded during reinstatement tests, bootstrapping analysis detected a calcium response when reinstatement was primed by cue or pellet+cue presentation, while a DA response was detected for pellet+cue reinstatement. These data further establish a role for nucleus accumbens core activity and DA in reinstatement of food seeking and represent the first attempt to simultaneously record the two during an extinction-reinstatement task.
Collapse
Affiliation(s)
- Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Gillian S Driscoll
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Hayley M Kuhn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Jonathan G Westlake
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
3
|
Saint-Jour E, Allichon MC, Andrianarivelo A, Montalban E, Martin C, Huet L, Heck N, Hagenston AM, Ravenhorst A, Marias M, Gervasi N, Arrivet F, Vilette A, Pinchaud K, Betuing S, Lissek T, Caboche J, Bading H, Vanhoutte P. Nuclear Calcium Signaling in D 1 Receptor-Expressing Neurons of the Nucleus Accumbens Regulates Molecular, Cellular, and Behavioral Adaptations to Cocaine. Biol Psychiatry 2025:S0006-3223(25)00055-1. [PMID: 39864789 DOI: 10.1016/j.biopsych.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens [NAc]). Notably, activation of the ERK (extracellular signal-regulated kinase) pathway in the striatum is known to trigger a transcriptional program shaping long-term responses to cocaine. Nuclear calcium signaling has also been shown to control multiple forms of transcription-dependent neuroadaptations, but the dynamics and roles of striatal nuclear calcium signaling in preclinical models of addiction remain unknown. METHODS A genetically encoded cell type-specific nuclear calcium probe has been developed to monitor calcium dynamics in the nuclei of striatal neurons, including in freely moving mice. A cell type-specific inhibitor of nuclear calcium signaling combined with 3-dimensional imaging of neuronal morphology, immunostaining, and behavior was used to disentangle the roles of nuclear calcium in NAc medium spiny neurons (MSNs) expressing the dopamine D1 receptor (D1R) or D2 receptor (D2R) on cocaine-evoked responses. RESULTS The D1R-mediated potentiation of calcium influx through glutamate NMDA receptors, which shapes cocaine effects, also drives nuclear calcium transients. Fiber photometry revealed that cocaine-treated mice showed a sustained nuclear calcium increase in NAc D1R-MSNs. Disrupting nuclear calcium in D1R-MSNs, but not D2R-MSNs, blocked cocaine-evoked morphological changes of MSNs and gene expression and blunted cocaine's rewarding effects. CONCLUSIONS Our study unravels the dynamics and roles of cocaine-induced nuclear calcium signaling increases in D1R-MSNs on molecular, cellular, and behavioral adaptations to cocaine and represents a significant breakthrough because it could contribute to the development of innovative strategies with therapeutic potential to alleviate addiction symptoms.
Collapse
Affiliation(s)
- Estefani Saint-Jour
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Marie-Charlotte Allichon
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Andry Andrianarivelo
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Enrica Montalban
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Paris, France
| | - Claire Martin
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Unité Mixte de Recherche 8251, Centre National de la Recherche Scientifique, Paris, France
| | - Lisa Huet
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Nicolas Heck
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Anna M Hagenston
- Heidelberg University, Interdisciplinary Center for Neurosciences, Institute of Neurobiology, Heidelberg, Germany
| | - Aisha Ravenhorst
- Heidelberg University, Interdisciplinary Center for Neurosciences, Institute of Neurobiology, Heidelberg, Germany
| | - Mélanie Marias
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Nicolas Gervasi
- Center for Interdisciplinary Research in Biology, College de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris Science et Lettre Research University, Paris, France
| | - Faustine Arrivet
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Adèle Vilette
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Katleen Pinchaud
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Sandrine Betuing
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Thomas Lissek
- Heidelberg University, Interdisciplinary Center for Neurosciences, Institute of Neurobiology, Heidelberg, Germany
| | - Jocelyne Caboche
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France
| | - Hilmar Bading
- Heidelberg University, Interdisciplinary Center for Neurosciences, Institute of Neurobiology, Heidelberg, Germany
| | - Peter Vanhoutte
- Sorbonne University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut of Biology Paris-Seine, Center for Neuroscience at Sorbonne University, Paris, France.
| |
Collapse
|
4
|
Wolf ME. Targeting Neuroplasticity in Substance Use Disorders: Implications for Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:259-280. [PMID: 39374445 PMCID: PMC11864087 DOI: 10.1146/annurev-pharmtox-061724-080548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The last two decades have witnessed substantial advances in identifying synaptic plasticity responsible for behavioral changes in animal models of substance use disorder. We have learned the most about cocaine-induced plasticity in the nucleus accumbens and its relationship to cocaine seeking, so that is the focus in this review. Synaptic plasticity pointing to potential therapeutic targets has been identified mainly using two drug self-administration models: extinction-reinstatement and abstinence models. A relationship between cocaine seeking and potentiated AMPAR transmission in nucleus accumbens is indicated by both models. In particular, an atypical subpopulation-Ca2+-permeable or CP-AMPARs-mediates cue-induced seeking that persists even after long periods of abstinence, modeling the persistent vulnerability to relapse that represents a major challenge in treating substance use disorder. We review strategies to reverse CP-AMPAR plasticity; strategies targeting other components of excitatory synapses, including dysregulated glutamate uptake and release; and behavioral interventions that can be augmented by harnessing synaptic plasticity.
Collapse
Affiliation(s)
- Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA;
| |
Collapse
|
5
|
Ruan H, Tong G, Jin M, Koch K, Wang Z. Mechanisms of nucleus accumbens deep brain stimulation in treating mental disorders. FUNDAMENTAL RESEARCH 2025; 5:48-54. [PMID: 40166085 PMCID: PMC11955059 DOI: 10.1016/j.fmre.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 04/02/2025] Open
Abstract
Growing evidence supports the effectiveness of deep brain stimulation (DBS) in treating various psychiatric disorders. DBS has the potential to selectively stimulate specific subcortical brain areas thus providing high-frequency electric stimulation of these regions. The nucleus accumbens (NAc), a frequent DBS target, has shown promise in treating psychiatric conditions like depression, obsessive-compulsive disorder, and addiction. In this review, we provide an overview across studies investigating the effects of NAc DBS in humans and animals and discuss potential mechanisms underlying its clinical efficacy. We address the anatomical properties of NAc and discuss, in particular, the frequently reported differential effects of NAc shell and NAc core DBS. Moreover, by outlining the various NAc cell types, transmitter systems (i.e., predominantly GABAergic and dopaminergic systems) and anatomical pathways that have been shown to be relevant for NAc DBS stimulation effects, we aim to further elucidate the neurobiological determinants of NAc DBS efficacy. Finally, since treatment effects of NAc DBS are most probably also related to alterations in NAc connected circuits or networks, we review studies focusing on the investigation of NAc DBS network effects. By examining these various components that are assumed to be of relevance in the context of NAc DBS, this review will hopefully contribute to increasing our knowledge about the mechanisms underlying NAc DBS and optimizing future selection of optimal DBS targets.
Collapse
Affiliation(s)
- Hanyang Ruan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich 81675, Germany
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Minghui Jin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kathrin Koch
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich 81675, Germany
- Department of Neuroradiology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich 81675, Germany
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- School of Psychology, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| |
Collapse
|
6
|
Weber SJ, Kawa AB, Beutler MM, Kuhn HM, Moutier AL, Westlake JG, Koyshman LM, Moreno CD, Wunsch AM, Wolf ME. Dopamine transmission at D1 and D2 receptors in the nucleus accumbens contributes to the expression of incubation of cocaine craving. Neuropsychopharmacology 2024; 50:461-471. [PMID: 39300272 PMCID: PMC11632087 DOI: 10.1038/s41386-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Relapse represents a consistent clinical problem for individuals with substance use disorder. In the incubation of craving model of persistent craving and relapse, cue-induced drug seeking progressively intensifies or "incubates" during the first weeks of abstinence from drug self-administration and then remains high for months. Previously, we and others have demonstrated that expression of incubated cocaine craving requires strengthening of excitatory synaptic transmission in the nucleus accumbens core (NAcc). However, despite the importance of dopaminergic signaling in the NAcc for motivated behavior, little is known about the role that dopamine (DA) plays in the incubation of cocaine craving. Here we used fiber photometry to measure DA transients in the NAcc of male and female rats during cue-induced seeking tests conducted in early abstinence from cocaine self-administration, prior to incubation, and late abstinence, after incubation of craving has plateaued. We observed DA transients time-locked to cue-induced responding but their magnitude did not differ significantly when measured during early versus late abstinence seeking tests. Next, we tested for a functional role of these DA transients by injecting DA receptor antagonists into the NAcc just before the cue-induced seeking test. Blockade of either D1 or D2 DA receptors reduced cue-induced cocaine seeking after but not before incubation. We found no main effect of sex or significant interaction of sex with other factors in our experiments. These results suggest that DA contributes to incubated cocaine seeking but the emergence of this role reflects changes in postsynaptic responsiveness to DA rather than presynaptic alterations.
Collapse
Affiliation(s)
- Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Hayley M Kuhn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alana L Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan G Westlake
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lara M Koyshman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Cloe D Moreno
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Kim YJ, Choi SJ, Hong SI, Park JC, Lee Y, Ma SX, Hur KH, Lee Y, Kim KM, Kim HK, Kim HY, Lee SY, Choi SY, Jang CG. The ion channel TRPA1 is a modulator of the cocaine reward circuit in the nucleus accumbens. Mol Psychiatry 2024; 29:3607-3622. [PMID: 38822069 PMCID: PMC11541219 DOI: 10.1038/s41380-024-02623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Drug addiction therapies commonly fail because continued drug use promotes the release of excessive and pleasurable dopamine levels. Because the connection between pleasure and drug use becomes hard-wired in the nucleus accumbens (NAc), which interfaces motivation, effective therapies need to modulate this mesolimbic reward system. Here, we report that mice with knockdown of the cation channel TRPA1 (transient receptor potential ankyrin 1) were resistant to the drug-seeking behavior and reward effects of cocaine compared to their wildtype litter mates. In our study, we demonstrate that TRPA1 inhibition in the NAc reduces cocaine activity and dopamine release, and conversely, that TRPA1 is critical for cocaine-induced synaptic strength in dopamine receptor 1-expressing medium spiny neurons. Taken together, our data support that cocaine-induced reward-related behavior and synaptic release of dopamine in the NAc are controlled by TRPA1 and suggest that TRPA1 has therapeutic potential as a target for drug misuse therapies.
Collapse
Affiliation(s)
- Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Su Jeong Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Cheol Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea.
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Schall TA, Li KL, Qi X, Lee BT, Wright WJ, Alpaugh EE, Zhao RJ, Liu J, Li Q, Zeng B, Wang L, Huang YH, Schlüter OM, Nestler EJ, Nieh EH, Dong Y. Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking. Nat Commun 2024; 15:9285. [PMID: 39468146 PMCID: PMC11519475 DOI: 10.1038/s41467-024-53690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
The nucleus accumbens (NAc) regulates reward-motivated behavior, but the temporal dynamics of NAc neurons that enable "free-willed" animals to obtain rewards remain elusive. Here, we recorded Ca2+ activity from individual NAc neurons when mice performed self-paced lever-presses for sucrose. NAc neurons exhibited three temporally-sequenced clusters, defined by times at which they exhibited increased Ca2+ activity: approximately 0, -2.5 or -5 sec relative to the lever-pressing. Dopamine D1 receptor (D1)-expressing neurons and D2-neurons formed the majority of the -5-sec versus -2.5-sec clusters, respectively, while both neuronal subtypes were represented in the 0-sec cluster. We found that pre-press activity patterns of D1- or D2-neurons could predict subsequent lever-presses. Inhibiting D1-neurons at -5 sec or D2-neurons at -2.5 sec, but not at other timepoints, reduced sucrose-motivated lever-pressing. We propose that the time-specific activity of D1- and D2-neurons mediate key temporal features of the NAc through which reward motivation initiates reward-seeking behavior.
Collapse
Affiliation(s)
- Terra A Schall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - King-Lun Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xiguang Qi
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Brian T Lee
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Erin E Alpaugh
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachel J Zhao
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jianwei Liu
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qize Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bo Zeng
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lirong Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Edward H Nieh
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
9
|
Kuhn HM, Serrano LC, Stys GA, Smith BL, Speckmaier J, Dawson BD, Murray BR, He J, Robison AJ, Eagle AL. Lateral entorhinal cortex neurons that project to nucleus accumbens mediate contextual associative memory. Learn Mem 2024; 31:a054026. [PMID: 39592189 PMCID: PMC11606517 DOI: 10.1101/lm.054026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The lateral entorhinal cortex (LEC) contains glutamatergic projections that innervate the nucleus accumbens (NAc) and may be involved in the encoding of contextual associations with both positive and negative valences, such as those encountered in drug cues or fear conditioning. To determine whether LEC-NAc neurons are activated by the encoding and recall of contexts associated with cocaine or footshock, we measured c-fos expression in these neurons and found that LEC-NAc neurons are activated in both contexts. Specifically, activation patterns of the LEC-NAc were observed in a novel context and reexposure to the same context, highlighting the specific role for LEC-NAc neurons in encoding rather than the valence of a specific event-related memory. Using a combination of circuit-specific chemogenetic tools and behavioral assays, we selectively inactivated LEC-NAc neurons in mice during the encoding and retrieval of memories of contexts associated with cocaine or footshock. Chemogenetic inactivation of LEC-NAc neurons impaired the formation of both positive and negative context-associated memories without affecting the retrieval of an established memory. This finding suggests a critical role for this circuit in the initial encoding of contextual associations. In summary, LEC-NAc neurons facilitate the encoding of contextual information, guiding motivational behaviors without directly mediating the hedonic or aversive properties of these associations.
Collapse
Affiliation(s)
- Hayley M Kuhn
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Grace A Stys
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Brianna L Smith
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | - Brooklynn R Murray
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jin He
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew L Eagle
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
10
|
Wunsch AM, Hwang EK, Funke JR, Baker R, Moutier A, Milovanovic M, Green TA, Wolf ME. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. Psychopharmacology (Berl) 2024; 241:1983-2001. [PMID: 38935096 DOI: 10.1007/s00213-024-06612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Alana Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
11
|
Kawa AB, Hashimoto JG, Beutler MM, Guizzetti M, Wolf ME. Changes in nucleus accumbens core translatome accompanying incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613147. [PMID: 39345421 PMCID: PMC11429699 DOI: 10.1101/2024.09.15.613147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In the 'incubation of cocaine craving' model of relapse, rats exhibit progressive intensification (incubation) of cue-induced craving over several weeks of forced abstinence from cocaine self-administration. The expression of incubated craving depends on plasticity of excitatory synaptic transmission in nucleus accumbens core (NAcC) medium spiny neurons (MSN). Previously, we found that the maintenance of this plasticity and the expression of incubation depends on ongoing protein translation, and the regulation of translation is altered after incubation of cocaine craving. Here we used male and female rats that express Cre recombinase in either dopamine D1 receptor- or adenosine 2a (A2a) receptor-expressing MSN to express a GFP-tagged ribosomal protein in a cell-type specific manner, enabling us to use Translating Ribosome Affinity Purification (TRAP) to isolate actively translating mRNAs from both MSN subtypes for analysis by RNA-seq. We compared rats that self-administered saline or cocaine. Saline rats were assessed on abstinence day (AD) 1, while cocaine rats were assessed on AD1 or AD40-50. For both D1-MSN and A2a-MSN, there were few differentially translated genes between saline and cocaine AD1 groups. In contrast, pronounced differences in the translatome were observed between cocaine rats on AD1 and AD40-50, and this was far more robust in D1-MSN. Notably, all comparisons revealed sex differences in translating mRNAs. Sequencing results were validated by qRT-PCR for several genes of interest. This study, the first to combine TRAP-seq, transgenic rats, and a cocaine self-administration paradigm, identifies translating mRNAs linked to incubation of cocaine craving in D1-MSN and A2a-MSN of the NAcC.
Collapse
Affiliation(s)
- Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
12
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611703. [PMID: 39314388 PMCID: PMC11419102 DOI: 10.1101/2024.09.12.611703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs, and that this pathway is operative only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, this effect of RA is occluded; instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes the incubation-associated elevation of cue-induced cocaine seeking. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| |
Collapse
|
13
|
Weber SJ, Kawa AB, Moutier AL, Beutler MM, Koyshman LM, Moreno CD, Westlake JG, Wunsch AM, Wolf ME. Dopamine transmission at D1 and D2 receptors in the nucleus accumbens contributes to the expression of incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600812. [PMID: 38979157 PMCID: PMC11230461 DOI: 10.1101/2024.06.26.600812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Relapse represents a consistent clinical problem for individuals with substance use disorder. In the incubation of craving model of persistent craving and relapse, cue-induced drug seeking progressively intensifies or 'incubates' during the first weeks of abstinence from drug self-administration and then remains high for months. Previously, we and others have demonstrated that expression of incubated cocaine craving requires strengthening of excitatory synaptic transmission in the nucleus accumbens core (NAcc). However, despite the importance of dopaminergic signaling in the NAcc for motivated behavior, little is known about the role that dopamine (DA) plays in the incubation of cocaine craving. Here we used fiber photometry to measure DA transients in the NAcc of male and female rats during cue-induced seeking tests conducted in early abstinence from cocaine self-administration, prior to incubation, and late abstinence, after incubation of craving has plateaued. We observed DA transients time-locked to cue-induced responding but their magnitude did not differ significantly when measured during early versus late abstinence seeking tests. Next, we tested for a functional role of these DA transients by injecting DA receptor antagonists into the NAcc just before the cue-induced seeking test. Blockade of either D1 or D2 DA receptors reduced cue-induced cocaine seeking after but not before incubation. We found no main effect of sex in our experiments. These results suggest that DA contributes to incubated cocaine seeking but the emergence of this role reflects changes in postsynaptic responsiveness to DA rather than presynaptic alterations.
Collapse
Affiliation(s)
- Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Alana L Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Lara M Koyshman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Cloe D Moreno
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Jonathan G Westlake
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
14
|
Pelletier OB, Brunori G, Wang Y, Robishaw JD. Post-transcriptional regulation and subcellular localization of G-protein γ7 subunit: implications for striatal function and behavioral responses to cocaine. Front Neuroanat 2024; 18:1394659. [PMID: 38764487 PMCID: PMC11100332 DOI: 10.3389/fnana.2024.1394659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
The striatal D1 dopamine receptor (D1R) and A2a adenosine receptor (A2aR) signaling pathways play important roles in drug-related behaviors. These receptors activate the Golf protein comprised of a specific combination of αolfβ2γ7 subunits. During assembly, the γ7 subunit sets the cellular level of the Golf protein. In turn, the amount of Golf protein determines the collective output from both D1R and A2aR signaling pathways. This study shows the Gng7 gene encodes multiple γ7 transcripts differing only in their non-coding regions. In striatum, Transcript 1 is the predominant isoform. Preferentially expressed in the neuropil, Transcript 1 is localized in dendrites where it undergoes post-transcriptional regulation mediated by regulatory elements in its 3' untranslated region that contribute to translational suppression of the γ7 protein. Earlier studies on gene-targeted mice demonstrated loss of γ7 protein disrupts assembly of the Golf protein. In the current study, morphological analysis reveals the loss of the Golf protein is associated with altered dendritic morphology of medium spiny neurons. Finally, behavioral analysis of conditional knockout mice with cell-specific deletion of the γ7 protein in distinct populations of medium spiny neurons reveals differential roles of the Golf protein in mediating behavioral responses to cocaine. Altogether, these findings provide a better understanding of the regulation of γ7 protein expression, its impact on Golf function, and point to a new potential target and mechanisms for treating addiction and related disorders.
Collapse
Affiliation(s)
- Oliver B. Pelletier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gloria Brunori
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Yingcai Wang
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Janet D. Robishaw
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Jiang T, Liang S, Zhang X, Dong S, Zhu H, Wang Y, Sun Y. Parvalbumin neurons in the nucleus accumbens shell modulate seizure in temporal lobe epilepsy. Neurobiol Dis 2024; 194:106482. [PMID: 38522590 DOI: 10.1016/j.nbd.2024.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Shuyu Liang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaohan Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Shasha Dong
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - HaiFang Zhu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Ying Wang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| | - Yanping Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
16
|
Mariani Y, Covelo A, Rodrigues RS, Julio-Kalajzić F, Pagano Zottola AC, Lavanco G, Fabrizio M, Gisquet D, Drago F, Cannich A, Baufreton J, Marsicano G, Bellocchio L. Striatopallidal cannabinoid type-1 receptors mediate amphetamine-induced sensitization. Curr Biol 2023; 33:5011-5022.e6. [PMID: 37879332 DOI: 10.1016/j.cub.2023.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Repeated exposure to psychostimulants, such as amphetamine, causes a long-lasting enhancement in the behavioral responses to the drug, called behavioral sensitization.1 This phenomenon involves several neuronal systems and brain areas, among which the dorsal striatum plays a key role.2 The endocannabinoid system (ECS) has been proposed to participate in this effect, but the neuronal basis of this interaction has not been investigated.3 In the CNS, the ECS exerts its functions mainly acting through the cannabinoid type-1 (CB1) receptor, which is highly expressed at terminals of striatal medium spiny neurons (MSNs) belonging to both the direct and indirect pathways.4 In this study, we show that, although striatal CB1 receptors are not involved in the acute response to amphetamine, the behavioral sensitization and related synaptic changes require the activation of CB1 receptors specifically located at striatopallidal MSNs (indirect pathway). These results highlight a new mechanism of psychostimulant sensitization, a phenomenon that plays a key role in the health-threatening effects of these drugs.
Collapse
Affiliation(s)
- Yamuna Mariani
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | - Ana Covelo
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | - Rui S Rodrigues
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | | | - Antonio C Pagano Zottola
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, UMR 5095, 33077 Bordeaux, France
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; University of Palermo, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro," 90127 Palermo, Italy
| | - Michela Fabrizio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, 5 Université PSL, 75231 Paris, France
| | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | | | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France.
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France.
| |
Collapse
|
17
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Gayden J, Puig S, Srinivasan C, Phan BN, Abdelhady G, Buck SA, Gamble MC, Tejeda HA, Dong Y, Pfenning AR, Logan RW, Freyberg Z. Integrative multi-dimensional characterization of striatal projection neuron heterogeneity in adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539488. [PMID: 37205475 PMCID: PMC10187292 DOI: 10.1101/2023.05.04.539488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Striatal projection neurons (SPNs) are traditionally segregated into two subpopulations expressing dopamine (DA) D1-like or D2-like receptors. However, this dichotomy is challenged by recent evidence. Functional and expression studies raise important questions: do SPNs co-express different DA receptors, and do these differences reflect unique striatal spatial distributions and expression profiles? Using RNAscope in mouse striatum, we report heterogenous SPN subpopulations distributed across dorsal-ventral and rostral-caudal axes. SPN subpopulations co-express multiple DA receptors, including D1 and D2 (D1/2R) and D1 and D3. Our integrative approach using single-nuclei multi-omics analyses provides a simple consensus to describe SPNs across diverse datasets, connecting it to complementary spatial mapping. Combining RNAscope and multi-omics shows D1/2R SPNs further separate into distinct subtypes according to spatial organization and conserved marker genes. Each SPN cell type contributes uniquely to genetic risk for neuropsychiatric diseases. Our results bridge anatomy and transcriptomics to offer new understandings of striatal neuron heterogeneity.
Collapse
Affiliation(s)
- Jenesis Gayden
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephanie Puig
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Medical-Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ghada Abdelhady
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Silas A. Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD 20894, USA
| | - Yan Dong
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Okas M, Kastner A, Gioia D, Woodward JJ. A brief exposure to toluene vapor alters the intrinsic excitability of D2 medium spiny neurons in the rat ventral striatum. Front Neurosci 2023; 17:1235866. [PMID: 37600018 PMCID: PMC10434816 DOI: 10.3389/fnins.2023.1235866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Although volatile organic solvents such as toluene are used for commercial and industrial uses, they are often voluntarily inhaled for their intoxicating and euphoric effects. Research into the effects of inhalants such as toluene on brain function have revealed actions on a variety of ligand-gated and voltage-activated ion channels involved in regulating neuronal excitability. Previous work from this laboratory has also shown that brief exposures to toluene vapor induce changes in the intrinsic excitability and synaptic transmission of neurons within the medial prefrontal cortex and ventral tegmental area that vary depending on projection target. In the present study, we recorded current-evoked spiking of medium spiny neurons (MSNs) in the nucleus accumbens (NAc) core and shell in adolescent rats exposed to an intoxicating concentration of toluene vapor. Compared to air controls, firing of NAc core MSNs in Sprague-Dawley rats was not altered 24 h after exposure to 10,500 ppm toluene vapor while spiking of NAc shell MSNs was enhanced at low current steps but reduced at higher current steps. When the rheobase current was used to putatively identify MSN subtypes, both "D1-like" and "D2-like" MSNs within the NAc shell but not core showed toluene-induced changes in firing. As toluene may itself have altered the rheobase resulting in misclassification of neuron subtype, we conducted additional studies using adolescent D2-Cre rats infused with a Cre-dependent mCherry reporter virus. Following toluene vapor exposure, spiking of NAc shell D2+ MSNs was enhanced at low current steps but inhibited at higher currents as compared to air controls while there were no differences in the firing of NAc shell D2- MSNs. The toluene-induced change in NAc D2+ shell MSN firing was accompanied by alterations in membrane resistance, rheobase, action potential rise time and height with no changes noted in D2- MSNs. Overall, these data add to a growing literature showing that brief exposures to intoxicating concentrations of toluene vapor causes selective alterations in the excitability of neurons within the addiction neurocircuitry that vary depending on sub-region, cell-type and projection target.
Collapse
Affiliation(s)
| | | | | | - John J. Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Favoretto CA, Pagliusi M, Morais-Silva G. Involvement of brain cell phenotypes in stress-vulnerability and resilience. Front Neurosci 2023; 17:1175514. [PMID: 37476833 PMCID: PMC10354562 DOI: 10.3389/fnins.2023.1175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Stress-related disorders' prevalence is epidemically increasing in modern society, leading to a severe impact on individuals' well-being and a great economic burden on public resources. Based on this, it is critical to understand the mechanisms by which stress induces these disorders. The study of stress made great progress in the past decades, from deeper into the hypothalamic-pituitary-adrenal axis to the understanding of the involvement of a single cell subtype on stress outcomes. In fact, many studies have used state-of-the-art tools such as chemogenetic, optogenetic, genetic manipulation, electrophysiology, pharmacology, and immunohistochemistry to investigate the role of specific cell subtypes in the stress response. In this review, we aim to gather studies addressing the involvement of specific brain cell subtypes in stress-related responses, exploring possible mechanisms associated with stress vulnerability versus resilience in preclinical models. We particularly focus on the involvement of the astrocytes, microglia, medium spiny neurons, parvalbumin neurons, pyramidal neurons, serotonergic neurons, and interneurons of different brain areas in stress-induced outcomes, resilience, and vulnerability to stress. We believe that this review can shed light on how diverse molecular mechanisms, involving specific receptors, neurotrophic factors, epigenetic enzymes, and miRNAs, among others, within these brain cell subtypes, are associated with the expression of a stress-susceptible or resilient phenotype, advancing the understanding/knowledge on the specific machinery implicate in those events.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gessynger Morais-Silva
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
21
|
Shen Z, Li W, Chang W, Yue N, Yu J. Sex differences in chronic pain-induced mental disorders: Mechanisms of cerebral circuitry. Front Mol Neurosci 2023; 16:1102808. [PMID: 36891517 PMCID: PMC9986270 DOI: 10.3389/fnmol.2023.1102808] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mental disorders such as anxiety and depression induced by chronic pain are common in clinical practice, and there are significant sex differences in their epidemiology. However, the circuit mechanism of this difference has not been fully studied, as preclinical studies have traditionally excluded female rodents. Recently, this oversight has begun to be resolved and studies including male and female rodents are revealing sex differences in the neurobiological processes behind mental disorder features. This paper reviews the structural functions involved in the injury perception circuit and advanced emotional cortex circuit. In addition, we also summarize the latest breakthroughs and insights into sex differences in neuromodulation through endogenous dopamine, 5-hydroxytryptamine, GABAergic inhibition, norepinephrine, and peptide pathways like oxytocin, as well as their receptors. By comparing sex differences, we hope to identify new therapeutic targets to offer safer and more effective treatments.
Collapse
Affiliation(s)
- Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Yue
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Male DAT Val559 Mice Exhibit Compulsive Behavior under Devalued Reward Conditions Accompanied by Cellular and Pharmacological Changes. Cells 2022; 11:cells11244059. [PMID: 36552823 PMCID: PMC9777203 DOI: 10.3390/cells11244059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Identified across multiple psychiatric disorders, the dopamine (DA) transporter (DAT) Ala559Val substitution triggers non-vesicular, anomalous DA efflux (ADE), perturbing DA neurotransmission and behavior. We have shown that DAT Val559 mice display a waiting impulsivity and changes in cognitive performance associated with enhanced reward motivation. Here, utilizing a within-subject, lever-pressing paradigm designed to bias the formation of goal-directed or habitual behavior, we demonstrate that DAT Val559 mice modulate their nose poke behavior appropriately to match context, but demonstrate a perseverative checking behavior. Although DAT Val559 mice display no issues with the cognitive flexibility required to acquire and re-learn a visual pairwise discrimination task, devaluation of reward evoked habitual reward seeking in DAT Val559 mutants in operant tasks regardless of reinforcement schedule. The direct DA agonist apomorphine also elicits locomotor stereotypies in DAT Val559, but not WT mice. Our observation that dendritic spine density is increased in the dorsal medial striatum (DMS) of DAT Val559 mice speaks to an imbalance in striatal circuitry that might underlie the propensity of DAT Val559 mutants to exhibit compulsive behaviors when reward is devalued. Thus, DAT Val559 mice represent a model for dissection of how altered DA signaling perturbs circuits that normally balance habitual and goal-directed behaviors.
Collapse
|
23
|
Tabakoff B, Hoffman PL. The role of the type 7 adenylyl cyclase isoform in alcohol use disorder and depression. Front Pharmacol 2022; 13:1012013. [PMID: 36386206 PMCID: PMC9649618 DOI: 10.3389/fphar.2022.1012013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
The translation of extracellular signals to intracellular responses involves a number of signal transduction molecules. A major component of this signal transducing function is adenylyl cyclase, which produces the intracellular "second messenger," cyclic AMP. What was initially considered as a single enzyme for cyclic AMP generation is now known to be a family of nine membrane-bound enzymes, and one cytosolic enzyme. Each member of the adenylyl cyclase family is distinguished by factors that modulate its catalytic activity, by the cell, tissue, and organ distribution of the family members, and by the physiological/behavioral functions that are subserved by particular family members. This review focuses on the Type 7 adenylyl cyclase (AC7) in terms of its catalytic characteristics and its relationship to alcohol use disorder (AUD, alcoholism), and major depressive disorder (MDD). AC7 may be part of the inherited system predisposing an individual to AUD and/or MDD in a sex-specific manner, or this enzyme may change in its expression or activity in response to the progression of disease or in response to treatment. The areas of brain expressing AC7 are related to responses to stress and evidence is available that CRF1 receptors are coupled to AC7 in the amygdala and pituitary. Interestingly, AC7 is the major form of the cyclase contained in bone marrow-derived cells of the immune system and platelets, and in microglia. AC7 is thus, poised to play an integral role in both peripheral and brain immune function thought to be etiologically involved in both AUD and MDD. Both platelet and lymphocyte adenylyl cyclase activity have been proposed as markers for AUD and MDD, as well as prognostic markers of positive response to medication for MDD. We finish with consideration of paths to medication development that may selectively modulate AC7 activity as treatments for MDD and AUD.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
24
|
Yu J, Sesack SR, Huang Y, Schlüter OM, Grace AA, Dong Y. Contingent Amygdala Inputs Trigger Heterosynaptic LTP at Hippocampus-To-Accumbens Synapses. J Neurosci 2022; 42:6581-6592. [PMID: 35840324 PMCID: PMC9410749 DOI: 10.1523/jneurosci.0838-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
The nucleus accumbens shell (NAcSh) is a key brain region where environmental cues acquire incentive salience to reinforce motivated behaviors. Principal medium spiny neurons (MSNs) in the NAcSh receive extensive glutamatergic projections from limbic regions, among which, the ventral hippocampus (vH) transmits information enriched in contextual cues, and the basolateral amygdala (BLA) encodes real-time arousing states. The vH and BLA project convergently to NAcSh MSNs, both activated in a time-locked manner on a cue-conditioned motivational action. In brain slices prepared from male and female mice, we show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAcSh synapses without affecting BLA-to-NAcSh synapses, revealing a heterosynaptic mechanism through which BLA signals persistently increase the temporally contingent vH-to-NAcSh transmission. Furthermore, this LTP is more prominent in dopamine D1 receptor-expressing (D1) MSNs than D2 MSNs and can be prevented by inhibition of either D1 receptors or dopaminergic terminals in NAcSh. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.SIGNIFICANCE STATEMENT In motivated behaviors, environmental cues associated with arousing stimuli acquire increased incentive salience, processes mediated in part by the nucleus accumbens (NAc). NAc principal neurons receive glutamatergic projections from the ventral hippocampus (vH) and basolateral amygdala (BLA), which transmit information encoding contextual cues and affective states, respectively. Our results show that co-activation of the two projections induces long-term potentiation (LTP) at vH-to-NAc synapses without affecting BLA-to-NAc synapses, revealing a heterosynaptic mechanism through which BLA signals potentiate the temporally contingent vH-to-NAc transmission. Furthermore, this LTP is prevented by inhibition of either D1 receptors or dopaminergic axons. This heterosynaptic LTP may provide a dopamine-guided mechanism through which vH-encoded cue inputs that are contingent to BLA activation acquire increased circuit representation to reinforce behavior.
Collapse
Affiliation(s)
- Jun Yu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Susan R Sesack
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Yanhua Huang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|