1
|
Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis 2022; 167:105686. [PMID: 35272023 DOI: 10.1016/j.nbd.2022.105686] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.
Collapse
|
2
|
Yoon HH, Ye S, Lim S, Jo A, Lee H, Hong F, Lee SE, Oh SJ, Kim NR, Kim K, Kim BJ, Kim H, Lee CJ, Nam MH, Hur JW, Jeon SR. CRISPR-Cas9 Gene Editing Protects from the A53T-SNCA Overexpression-Induced Pathology of Parkinson's Disease In Vivo. CRISPR J 2022; 5:95-108. [PMID: 35191750 DOI: 10.1089/crispr.2021.0025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in specific genes, including synuclein alpha (SNCA) that encodes the α-synuclein protein, are known to be risk factors for sporadic Parkinson's disease (PD), as well as critical factors for familial PD. In particular, A53T-mutated SNCA (A53T-SNCA) is a well-studied familial pathologic mutation in PD. However, techniques for deletion of the mutated SNCA gene in vivo have not been developed. Here, we used the CRISPR-Cas9 system to delete A53T-SNCA in vitro as well as in vivo. Adeno-associated virus carrying SaCas9-KKH with a single-guide RNA targeting A53T-SNCA significantly reduced A53T-SNCA expression levels in vitro. Furthermore, we tested its therapeutic potential in vivo in a viral A53T-SNCA-overexpressing rat model of PD. Gene deletion of A53T-SNCA significantly rescued the overexpression of α-synuclein, reactive microgliosis, dopaminergic neurodegeneration, and parkinsonian motor symptoms. Our findings propose CRISPR-Cas9 system as a potential prevention strategy for A53T-SNCA-specific PD.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sunghyeok Ye
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sunhwa Lim
- Convergence Research Center for Dementia, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Ara Jo
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Hawon Lee
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Felix Hong
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Soo-Jin Oh
- Convergence Research Center for Dementia, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Na-Rae Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea; and Kyung Hee University, Seoul, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, Korea
| | - Junseok W Hur
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Kyung Hee University, Seoul, Korea
| |
Collapse
|
3
|
Titze-de-Almeida R, Titze-de-Almeida SS, Ferreira NR, Fontanari C, Faccioli LH, Del Bel E. Suppressing nNOS Enzyme by Small-Interfering RNAs Protects SH-SY5Y Cells and Nigral Dopaminergic Neurons from 6-OHDA Injury. Neurotox Res 2019; 36:117-131. [PMID: 31041676 DOI: 10.1007/s12640-019-00043-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/11/2023]
Abstract
Nitric oxide (NO) has chemical properties that make it uniquely suitable as an intracellular and intercellular messenger. NO is produced by the activity of the enzyme nitric oxide synthases (NOS). There is substantial and mounting evidence that slight abnormalities of NO may underlie a wide range of neurodegenerative disorders. NO participates of the oxidative stress and inflammatory processes that contribute to the progressive dopaminergic loss in Parkinson's disease (PD). The present study aimed to evaluate in vitro and in vivo the effects of neuronal NOS-targeted siRNAs on the injury caused in dopaminergic neurons by the toxin 6-hidroxydopamine (6-OHDA). First, we confirmed (immunohistochemistry and Western blotting) that SH-SY5Y cell lineage expresses the dopaminergic marker tyrosine hydroxylase (TH) and the protein under analysis, neuronal NOS (nNOS). We designed four siRNAs by using the BIOPREDsi algorithm choosing the one providing the highest knockdown of nNOS mRNA in SH-SY5Y cells, as determined by qPCR. siRNA 4400 carried by liposomes was internalized into cells, caused a concentration-dependent knockdown on nNOS, and reduced the toxicity induced by 6-OHDA (p < 0.05). Regarding in vivo action in the dopamine-depleted animals, intra-striatal injection of siRNA 4400 at 4 days prior 6-OHDA produced a decrease in the rotational behavior induced by apomorphine. Finally, siRNA 4400 mitigated the loss of TH(+) cells in substantia nigra dorsal and ventral part. In conclusion, the suppression of nNOS enzyme by targeted siRNAs modified the progressive death of dopaminergic cells induced by 6-OHDA and merits further pre-clinical investigations as a neuroprotective approach for PD.
Collapse
Affiliation(s)
- Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília-FAV, Brasília, DF, 70910-900, Brazil
| | - Simoneide S Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília-FAV, Brasília, DF, 70910-900, Brazil
| | - Nadia Rubia Ferreira
- Department of Basic and Oral Biology, Dental School, University of São Paulo (USP), Ribeirão Preto, SP, 14040-904, Brazil
| | - Caroline Fontanari
- Department of Clinical Analyses, Toxicology and Bromatology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analyses, Toxicology and Bromatology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Dental School, University of São Paulo (USP), Ribeirão Preto, SP, 14040-904, Brazil.
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Dopaminergic modulation of striatal function and Parkinson's disease. J Neural Transm (Vienna) 2019; 126:411-422. [PMID: 30937538 DOI: 10.1007/s00702-019-01997-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023]
Abstract
The striatum is richly innervated by mesencephalic dopaminergic neurons that modulate a diverse array of cellular and synaptic functions that control goal-directed actions and habits. The loss of this innervation has long been thought to be the principal cause of the cardinal motor symptoms of Parkinson's disease (PD). Moreover, chronic, pharmacological overstimulation of striatal dopamine (DA) receptors is generally viewed as the trigger for levodopa-induced dyskinesia (LID) in late-stage PD patients. Here, we discuss recent advances in our understanding of the relationship between the striatum and DA, particularly as it relates to PD and LID. First, it has become clear that chronic perturbations of DA levels in PD and LID bring about cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity. Second, perturbations in DA signaling also bring about non-homeostatic aberrations in synaptic plasticity that contribute to disease symptoms. Third, it has become evident that striatal interneurons are major determinants of network activity and behavior in PD and LID. Finally, recent work examining the activity of SPNs in freely moving animals has revealed that the pathophysiology induced by altered DA signaling is not limited to imbalance in the average spiking in direct and indirect pathways, but involves more nuanced disruptions of neuronal ensemble activity.
Collapse
|
5
|
Woodard A, Barbery B, Wilkinson R, Strozyk J, Milner M, Doucette P, Doran J, Appleby K, Atwill H, Bell WE, Turner JE. The role of neuronal nitric oxide and its pathways in the protection and recovery from neurotoxin-induced de novo hypokinetic motor behaviors in the embryonic zebrafish ( Danio rerio). AIMS Neurosci 2019; 6:25-42. [PMID: 32341966 PMCID: PMC7179346 DOI: 10.3934/neuroscience.2019.1.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
Neuronal nitric oxide (nNO) has been shown to affect motor function in the brain. Specifically, nNO acts in part through regulation of dopamine (DA) release, transporter function, and the elicitation of neuroprotection/neurodegeneration of neurons in conditions such as Parkinson's disease (PD). Recently, the zebrafish has been proposed to be a new model for the study of PD since neurotoxin damage to their nigrostriatal-like neurons exhibit PD-like motor dysfunctions similar to those of mammalian models and human patients. Results from this study demonstrate that treatment of 5 days post fertilization (dpf) fish with a nNO synthase inhibitor as a co-treatment with 6-OHDA facilitates long-term survival and accelerates the recovery from 6-OHDA-induced hypokinesia-like symptoms. These findings are unique in that under conditions of neurotoxin-induced stress, the inhibition of the NO-related S-nitrosylation indirect pathway dramatically facilitates recovery from 6-OHDA treatment but inhibition of the NO-sGC-cGMP direct pathway is essential for survival in 5 dpf treated fish. In conclusion, these results indicate that nNOS and the inhibition of the NO-linked S-nitrosylation pathway plays an important role in antagonizing the protection and recovery of fish from neurotoxin treatment. These data begin to help in the understanding of the role of NO as a neuroprotectant in dopaminergic pathways, particularly those that influence motor dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - James E. Turner
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA
| |
Collapse
|
6
|
Differential Expression of Striatal ΔFosB mRNA and FosB mRNA After Different Levodopa Treatment Regimens in a Rat Model of Parkinson's Disease. Neurotox Res 2019; 35:563-574. [PMID: 30645726 DOI: 10.1007/s12640-018-9993-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
Levodopa-induced dyskinesia (LID) is the main side effect associated with levodopa treatment and represents the biggest challenge for Parkinson's disease therapy. While the overexpression of ΔFosB transcription factor is related to the development of LID, few studies have been undertaken on fosB gene transcriptional regulation induced by levodopa in vivo. The aim of this study is to evaluate the expression of ΔFosB mRNA and FosB mRNA in the striatum after acute, chronic, and subchronic levodopa treatment in rats with unilateral 6-OHDA-lesion in the medial forebrain bundle. qRT-PCR was used to compare the levels of ΔFosB and FosB mRNA expression in the dopamine-denervated striatum following levodopa treatment. While the results obtained after a single levodopa dose indicate a significant increase of ∆FosB mRNA expression in the striatum 1 h post-injection, the levels returned to baseline values after 24 h. After subchronic levodopa treatment, the levels of ∆FosB and FosB mRNA expression were lower 1 h post-administration of levodopa in comparison with acute effect. However, after chronic levodopa treatment, ∆FosB mRNA expression in the striatum persisted in dyskinetic rats only, and positive correlation was found between the levels of ∆FosB mRNA expression 1 h after levodopa administration and the level of dyskinetic severity. In summary, acute levodopa treatment led to highly increased levels of ∆FosB mRNA expression in the striatum. While repeated administration induced a partial desensitization of the fosB gene in the striatum, it did not suppress its activity completely, which could explain why dyskinesia appears after chronic levodopa treatment.
Collapse
|
7
|
The role of striatum and prefrontal cortex in the prevention of amphetamine-induced schizophrenia-like effects mediated by nitric oxide compounds. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:353-362. [PMID: 29555252 DOI: 10.1016/j.pnpbp.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/07/2023]
Abstract
Pharmacological manipulation of nitric oxide (NO) has been suggested as a promising treatment for schizophrenia symptoms. A single infusion of sodium nitroprusside, a NO donor with short half-life, was found to improve schizophrenia symptoms. However, an increasing number of preclinical studies have demonstrated the potential beneficial effects of both NO donors and inhibitors. We investigated the potential synergistic effect of sub-effective doses of the NO donor sodium nitroprusside or the NO inhibitor 7-Nitroindazole (7NI) combined with clozapine, a standard atypical antipsychotic, on counteracting amphetamine or MK-801-induced psychosis-like behaviors. The impact of sodium nitroprusside and 7NI on cAMP regulation in the prefrontal cortex and striatum was also evaluated. Confirming previous results, we found that both NO donors and inhibitors prevented amphetamine-induced effects (prepulse inhibition [PPI] disruption and hyperlocomotion). In addition, we observed a synergistic effect of sodium nitroprusside and clozapine on antagonizing the disruptive effects of amphetamine, but not MK-801, in the PPI test. The sub-effective dose of 7NI tested did not prevent amphetamine or MK-induced PPI effects when combined with clozapine. Interestingly, cAMP levels were significantly decreased in the prefrontal cortex after treatment with sodium nitroprusside. In the striatum, both sodium nitroprusside and 7NI blocked the amphetamine-induced increase of cAMP. Our data corroborate previous findings on the dopaminergic mechanisms involved in the action of sodium nitroprusside. It is likely that the differential effects of sodium nitroprusside are related to its ability to modify cAMP levels in the prefrontal cortex.
Collapse
|
8
|
Carroll CB, Wyse RKH. Simvastatin as a Potential Disease-Modifying Therapy for Patients with Parkinson's Disease: Rationale for Clinical Trial, and Current Progress. JOURNAL OF PARKINSONS DISEASE 2018; 7:545-568. [PMID: 29036837 PMCID: PMC5676977 DOI: 10.3233/jpd-171203] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many now believe the holy grail for the next stage of therapeutic advance surrounds the development of disease-modifying approaches aimed at intercepting the year-on-year neurodegenerative decline experienced by most patients with Parkinson’s disease (PD). Based on recommendations of an international committee of experts who are currently bringing multiple, potentially disease-modifying, PD therapeutics into long-term neuroprotective PD trials, a clinical trial involving 198 patients is underway to determine whether Simvastatin provides protection against chronic neurodegeneration. Statins are widely used to reduce cardiovascular risk, and act as competitive inhibitors of HMG-CoA reductase. It is also known that statins serve as ligands for PPARα, a known arbiter for mitochondrial size and number. Statins possess multiple cholesterol-independent biochemical mechanisms of action, many of which offer neuroprotective potential (suppression of proinflammatory molecules & microglial activation, stimulation of endothelial nitric oxide synthase, inhibition of oxidative stress, attenuation of α-synuclein aggregation, modulation of adaptive immunity, and increased expression of neurotrophic factors). We describe the biochemical, physiological and pharmaceutical credentials that continue to underpin the rationale for taking Simvastatin into a disease-modifying trial in PD patients. While unrelated to the Simvastatin trial (because this conducted in patients who already have PD), we discuss conflicting epidemiological studies which variously suggest that statin use for cardiovascular prophylaxis may increase or decrease risk of developing PD. Finally, since so few disease-modifying PD trials have ever been launched (compared to those of symptomatic therapies), we discuss the rationale of the trial structure we have adopted, decisions made, and lessons learnt so far.
Collapse
Affiliation(s)
- Camille B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | | |
Collapse
|
9
|
Nascimento GC, Bariotto-dos-Santos K, Leite-Panissi CRA, Del-Bel EA, Bortolanza M. Nociceptive Response to l-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats. Neurotox Res 2018; 34:799-807. [DOI: 10.1007/s12640-018-9896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022]
|
10
|
Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ. Striatal synapses, circuits, and Parkinson's disease. Curr Opin Neurobiol 2017; 48:9-16. [PMID: 28843800 DOI: 10.1016/j.conb.2017.08.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
Abstract
The striatum is a hub in the basal ganglia circuitry controlling goal directed actions and habits. The loss of its dopaminergic (DAergic) innervation in Parkinson's disease (PD) disrupts the ability of the two principal striatal projection systems to respond appropriately to cortical and thalamic signals, resulting in the hypokinetic features of the disease. New tools to study brain circuitry have led to significant advances in our understanding of striatal circuits and how they adapt in PD models. This short review summarizes some of these recent studies and the gaps that remain to be filled.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven M Graves
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Santos-Lobato BL, Borges V, Ferraz HB, Mata IF, Zabetian CP, Tumas V. Association of a neuronal nitric oxide synthase gene polymorphism with levodopa-induced dyskinesia in Parkinson's disease. Nitric Oxide 2017; 74:86-90. [PMID: 28602747 DOI: 10.1016/j.niox.2017.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 06/06/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) is a common complication of advanced Parkinson's disease (PD). PD physiopathology is associated with dopaminergic and non-dopaminergic pathways, including the nitric oxide system. The present study aims to examine the association of a neuronal nitric oxide synthase gene (NOS1) single nucleotide polymorphism (rs2682826) with LID in PD patients. METHODS AND RESULTS We studied 186 PD patients using levodopa. The presence of LID was defined as a MDS-UPDRS Part IV score ≥1 on item 4.1. We tested for association between NOS1 rs2682826 and the presence, daily frequency, and functional impact of LID using regression models, adjusting for important covariates. There was no significant association between genotype and any of the LID-related variables examined. CONCLUSIONS Our results suggest that this NOS1 polymorphism does not contribute to LID susceptibility or severity. However, additional studies that include a comprehensive set of NOS1 variants will be needed to fully define the role of this gene in LID.
Collapse
Affiliation(s)
- Bruno Lopes Santos-Lobato
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research Support on Applied Neuroscience (NAPNA-USP), São Paulo, Brazil.
| | - Vanderci Borges
- Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | | | - Ignacio Fernandez Mata
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Neurology, University of Washington, Seattle, WA, USA.
| | - Cyrus P Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Neurology, University of Washington, Seattle, WA, USA.
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research Support on Applied Neuroscience (NAPNA-USP), São Paulo, Brazil.
| |
Collapse
|
12
|
Murcia V, Johnson L, Baldasare M, Pouliot B, McKelvey J, Barbery B, Lozier J, Bell WE, Turner JE. Effects of Estrogen, Nitric Oxide, and Dopamine on Behavioral Locomotor Activities in the Embryonic Zebrafish: A Pharmacological Study. TOXICS 2016; 4:toxics4040024. [PMID: 29051426 PMCID: PMC5606654 DOI: 10.3390/toxics4040024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) has been shown to affect motor function. Specifically, NO has been shown to act through regulation of dopamine (DA) release, transporter function, and the elicitation of neuroprotection/neurodegeneration of neurons. Recently, zebrafish have been proposed to be a new model for the study of various types of motor dysfunctions, since neurotoxin damage to their nigrostriatal-like neurons exhibit motor anomalies similar to those of mammalian models and human patients. Results from this study demonstrate that when NO synthesis is inhibited in zebrafish, using a neuronal NO synthase inhibitor (nNOSI), a condition called ‘listless’ occurs, where the fish lack swimming abilities, are rigid, and have difficulty maintaining balance. Additionally, co-treatment with either NO or estrogen (E2), an upstream regulator of NO synthase, can rescue fish from the ‘listless’ phenotype caused by exposure to the neurotoxin 6-hydroxydopamine (6 OHDA). In turn, NO deprived zebrafish were rescued from the ‘listless’ phenotype when co-treated with L-DOPA, a precursor to DA. Interestingly, the longer fish are exposed to a 6 OHDA + nNOSI co-treatment, the slower the recovery after washout, compared to a single treatment of each. Most significantly, NO involvement in the motor homeostasis of the embryonic zebrafish was shown to be expressed through the NO-cGMP-dependent pathway, and response to nNOSI treatments is developmentally regulated. In conclusion, these results indicate that there is a link between E2, NO, and DA systems that regulate motor functions in the embryonic zebrafish.
Collapse
Affiliation(s)
- Vania Murcia
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Luke Johnson
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Meredith Baldasare
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Bridgette Pouliot
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - John McKelvey
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Brandon Barbery
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Julie Lozier
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - Wade E Bell
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| | - James E Turner
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA.
| |
Collapse
|
13
|
Džoljić E, Grbatinić I, Kostić V. Why is nitric oxide important for our brain? FUNCTIONAL NEUROLOGY 2016; 30:159-63. [PMID: 26910176 DOI: 10.11138/fneur/2015.30.3.159] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The freely diffusible gaseous compound nitric oxide (NO) has been shown to be an important messenger in many organ systems throughout the body, and particularly in the central nervous system (CNS). The importance of NO as an intermediary in cell communication in the brain is highlighted by the fact that the excitatory amino acid glutamate, the most abundant CNS neurotransmitter, is an initiator of the reaction that forms NO. Because of its numerous physiological and pathophysiological roles, the impact of NO on clinical medicine is developing. NO can act as a "double-edged sword" and it has been demonstrated that clarification of the dual effect of NO might have implications for clinical medicine, and could lead to the emergence of therapeutic opportunities. Accordingly, NO was proclaimed "Mole cule of the Year" in 1992 by the journal Science, while discovery of the pathways and roles of NO was acknowledged with the Nobel Prize in 1998. Additionally, the ubiquity of NO in the CNS implies that drugs designed to modify the biological activity of NO may have distinct effects. Thus, further clinical applications of NO, of its analogs or of newly developed NOS inhibitors are forthcoming. The therapeutic challenge would be to succeed in manipulating the NO pathways selectively.
Collapse
|
14
|
Santos-Lobato BLD, Del-Bel E, Pittella JEH, Tumas V. Cytoarchitecture of nitrergic neurons in the human striatum and subthalamic nucleus. Brain Res Bull 2016; 124:129-35. [PMID: 27060610 DOI: 10.1016/j.brainresbull.2016.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Nitric oxide (NO) is a gaseous molecule that modulates several physiological processes, including signal transmission in the central nervous system. There is evidence supporting NO as a major neurotransmitter involved in motor and emotion/behavior control. We investigated the distribution and morphology of nitrergic neurons in the two main input structures of the basal ganglia of human brain: the striatum and subthalamic nucleus. METHODS We studied samples of striatum (caudate and putamen) and subthalamic nucleus of 20 human brains from subjects without neurological/psychiatric diseases. The tissues were stained by histochemistry for nicotinamide adenine dinucleotide phosphate diaphorase activity and by immunohistochemistry for neuronal NO synthase (nNOS). Subsequently, we analyzed the nitrergic neuronal profile and its morphometric parameters. RESULTS Our data corroborate that approximately 2% of neurons in striatum express nNOS and these exhibited morphology characteristic of interneurons. Posterior regions of the striatum have a higher nitrergic neuronal profile than anterior regions of this nucleus suggesting an anteroposterior gradient of nitrergic neurons. Posterior limbic-associated areas of the striatum have a higher nitrergic neuronal profile compared to other functional subdivisions. Also, approximately 90% of neurons in the subthalamic nucleus express nNOS. CONCLUSIONS A remarkable presence of nitrergic neurons in the human striatum and subthalamic nucleus suggests that NO may play a critical role in the physiology of these nuclei.
Collapse
Affiliation(s)
- Bruno Lopes Dos Santos-Lobato
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research Support on Applied Neuroscience (NAPNA-USP), Brazil.
| | - Elaine Del-Bel
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research Support on Applied Neuroscience (NAPNA-USP), Brazil.
| | - José Eymard Homem Pittella
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research Support on Applied Neuroscience (NAPNA-USP), Brazil.
| |
Collapse
|
15
|
Antidyskinetic Effect of 7-Nitroindazole and Sodium Nitroprusside Associated with Amantadine in a Rat Model of Parkinson’s Disease. Neurotox Res 2016; 30:88-100. [DOI: 10.1007/s12640-016-9618-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/19/2022]
|
16
|
Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel E. Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson's disease induced by L-DOPA? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0190. [PMID: 26009769 DOI: 10.1098/rstb.2014.0190] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammatory mechanisms are proposed to play a role in L-DOPA-induced dyskinesia. Cyclooxygenase-2 (COX2) contributes to inflammation pathways in the periphery and is constitutively expressed in the central nervous system. Considering that inhibition of nitric oxide (NO) formation attenuates L-DOPA-induced dyskinesia, this study aimed at investigating if a NO synthase (NOS) inhibitor would change COX2 brain expression in animals with L-DOPA-induced dyskinesia. To this aim, male Wistar rats received unilateral 6-hydroxydopamine microinjection into the medial forebrain bundle were treated daily with L-DOPA (21 days) combined with 7-nitroindazole or vehicle. All hemi-Parkinsonian rats receiving l-DOPA showed dyskinesia. They also presented increased neuronal COX2 immunoreactivity in the dopamine-depleted dorsal striatum that was directly correlated with dyskinesia severity. Striatal COX2 co-localized with choline-acetyltransferase, calbindin and DARPP-32 (dopamine-cAMP-regulated phosphoprotein-32), neuronal markers of GABAergic neurons. NOS inhibition prevented L-DOPA-induced dyskinesia and COX2 increased expression in the dorsal striatum. These results suggest that increased COX2 expression after L-DOPA long-term treatment in Parkinsonian-like rats could contribute to the development of dyskinesia.
Collapse
Affiliation(s)
- Mariza Bortolanza
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil
| | - Fernando E Padovan-Neto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Maurício Dos Santos-Pereira
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Paris, France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto, Department of Morphology, University of São Paulo (USP), Physiology and Basic Pathology, Av. Café S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, São Paulo, Brazil Department of Behavioural Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil Medical School, Department of Physiology, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
The preferential nNOS inhibitor 7-nitroindazole and the non-selective one N(G)-nitro-L-arginine methyl ester administered alone or jointly with L-DOPA differentially affect motor behavior and monoamine metabolism in sham-operated and 6-OHDA-lesioned rats. Brain Res 2015; 1625:218-37. [PMID: 26319690 DOI: 10.1016/j.brainres.2015.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/21/2022]
Abstract
Reciprocal interactions between nitrergic and dopaminergic systems play a key role in the control of motor behavior. In the present study, we performed a comparative analysis of motor behavior (locomotor activity, catalepsy, rotational behavior) and monoamine metabolism in the striatum and substantia nigra of unilaterally sham-operated and 6-OHDA-lesioned rats treated with the preferential neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI) or the non-selective one N(G)-nitro-L-arginine methyl ester (L-NAME), alone or in combination with L-DOPA. Each NOS inhibitor given alone (50mg/kg) induced a distinct catalepsy 30 min after injection but only 7-NI impaired spontaneous locomotion after 10 min. In 6-OHDA-lesioned rats, chronic L-DOPA (25mg/kg) induced 2.5-h long contralateral rotations. 7-NI (30 and 50mg/kg) markedly reduced the intensity of L-DOPA-induced contralateral rotations while extending their duration until 4.5h whereas L-NAME (50 and 100mg/kg) only tended to attenuate their intensity without affecting the duration. 7-NI but not L-NAME significantly increased endogenous tissue DA levels in the nigrostriatal system of both sham-operated and 6-OHDA-lesioned rats. In L-DOPA-treated group, 7-NI significantly enhanced the L-DOPA-derived tissue DA content in this system and decreased the level of the intracellular DA metabolite DOPAC produced by monoamine oxidase (MAO). In contrast to 7-NI, L-NAME decreased markedly DA content and did not affect DOPAC level in the ipsilateral striatum. It means that the differences in 7-NI and L-NAME-mediated modulation of L-DOPA-induced behavioral and biochemical effects resulted not only from the inhibition of NOS activity but also from differences in their ability to inhibit MAO.
Collapse
|
18
|
Padovan-Neto FE, Cavalcanti-Kiwiatkoviski R, Carolino ROG, Anselmo-Franci J, Del Bel E. Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology 2015; 89:87-99. [DOI: 10.1016/j.neuropharm.2014.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 12/21/2022]
|
19
|
Ramírez-García G, Palafox-Sánchez V, Limón ID. Nitrosative and cognitive effects of chronic L-DOPA administration in rats with intra-nigral 6-OHDA lesion. Neuroscience 2015; 290:492-508. [PMID: 25644418 DOI: 10.1016/j.neuroscience.2015.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
Abstract
Besides motor disturbances, other symptoms found in the early stage of Parkinson's disease (PD) are deficits in both learning and memory. The nigro-striatal-cortical pathway is affected in this pathology, with this neuronal circuit involved in cognitive processes such as spatial working memory (SWM). However, cognitive dysfunction appears even when the patients are receiving L-DOPA treatment. There is evidence that the dopamine metabolism formed by L-DOPA generates free radicals such as nitric oxide, which may cause damage through the nitrosative stress (NS). The aim of this study was to evaluate both the effects of chronic L-DOPA administration on SWM and the production of NS in rats using an intra-nigral lesion caused by 6-hydroxydopamine (6-OHDA). Post-lesion, the animals were administered orally with L-DOPA/Carbidopa (100-mg/kg) for 20 days. An SWM task in a Morris water maze was conducted post-treatment. Nitrite levels and immunoreactivity of 3-Nitrotyrosine (3-NT), Inducible Nitric Oxide Synthase (iNOS), Glial Fibrillary Acidic Protein (GFAP), and Tyrosine Hydroxylase (TH) were evaluated in the substantia nigra pars compacta, the dorsal striatum and the medial prefrontal cortex. Our results show that chronic L-DOPA administration in rats with intra-nigral 6-OHDA-lesion caused significant increases in SWM deficit, nitrite levels and the immunoreactivity of 3-NT, iNOS and GFAP in the nigro-striatal-cortical pathway. These facts suggest that as L-DOPA can induce NS in rats with dopaminergic intra-nigral lesion, it could play a key role in the impairment of the SWM, and thus can be considered as a toxic mechanism that induces cognitive deficit in PD patients.
Collapse
Affiliation(s)
- G Ramírez-García
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Avenida San Claudio, C.U. Edificio 105C Colonia, Jardines de San Manuel AP, 72570 Puebla, Mexico.
| | - V Palafox-Sánchez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Avenida San Claudio, C.U. Edificio 105C Colonia, Jardines de San Manuel AP, 72570 Puebla, Mexico.
| | - I D Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Avenida San Claudio, C.U. Edificio 105C Colonia, Jardines de San Manuel AP, 72570 Puebla, Mexico.
| |
Collapse
|
20
|
Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease. Neurobiol Dis 2014; 73:377-87. [PMID: 25447229 DOI: 10.1016/j.nbd.2014.10.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.
Collapse
Affiliation(s)
- Mariza Bortolanza
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Fernando E Padovan-Neto
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Miso Mitkovski
- Light Microscopy Facility Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
21
|
Solís O, Espadas I, Del-Bel EA, Moratalla R. Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(-/-) aphakia mice. Neurobiol Dis 2014; 73:49-59. [PMID: 25281315 DOI: 10.1016/j.nbd.2014.09.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/12/2014] [Accepted: 09/21/2014] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO), a gaseous messenger molecule synthesized by nitric oxide synthase (NOS), plays a pivotal role in integrating dopamine transmission in the basal ganglia and has been implicated in the pathogenesis of Parkinson disease (PD). To study the role of the nitrergic system in l-DOPA-induced dyskinesia (LID), we assessed the effect of the pharmacological manipulation of NO levels and NO/cyclic guanosine monophosphate (cGMP) signaling on LID in the Pitx3(-/-) aphakia mouse, a genetic model of PD. To evaluate the effect of decreased NO signaling on the development of LID, Pitx3(-/-) mice were chronically treated with l-DOPA and 7-nitroindazole (7-NI, a neuronal NOS inhibitor). To evaluate its effect on the expression of established LID, 7-NI was administered acutely to dyskinetic mice. The chronic 7-NI treatment attenuated the development of LID in the Pitx3(-/-) mice, and the sub-acute 7-NI treatment attenuated established dyskinesia without affecting the beneficial therapeutic effect of l-DOPA. Moreover, 7-NI significantly reduced FosB and pAcH3 expression in the acutely and chronically l-DOPA-treated mice. We also examined how increasing NO/cGMP signaling affects LID expression by acutely administering molsidomine (an NO donor) or zaprinast (a cGMP phosphodiesterase 5-PDE5 inhibitor) before l-DOPA in mice with established dyskinesia. Paradoxically, the administration of either of these drugs also significantly diminished the expression of established LID; however, the effect occurred at the expense of the antiparkinsonian l-DOPA properties. We demonstrate that targeting the NO/cGMP signaling pathway reduces dyskinetic behaviors and molecular markers, but only the 7-NI treatment preserved the antiparkinsonian effect of l-DOPA, indicating that NOS inhibitors represent a potential therapy to reduce LID.
Collapse
Affiliation(s)
- Oscar Solís
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Espadas
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Elaine A Del-Bel
- Department of Morphology, Physiology and Pathology, School of Odontology, University of Sao Paulo, Campus Ribeirao Preto, Brazil
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, 28002 Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Critical role of nitric oxide in the modulation of prepulse inhibition in Swiss mice. Psychopharmacology (Berl) 2014; 231:663-72. [PMID: 24101156 DOI: 10.1007/s00213-013-3277-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 09/02/2013] [Indexed: 01/13/2023]
Abstract
RATIONALE Nitric oxide (NO) modulates the dopamine uptake and release processes and appears to be implicated in dopamine-related pathologies, such as schizophrenia. However, it is unclear whether there is excess or deficient NO synthesis in schizophrenia pathophysiology. Analyses of the intracellular pathways downstream of NO system activation have identified the cyclic nucleotide cyclic guanosine monophosphate (cGMP) as a possible target for drug development. Defects in the sensorimotor gating of the neural mechanism underlying the integration and processing of sensory information have been detected across species through prepulse inhibition (PPI). OBJECTIVES The aim of this study was to investigate the effects of NO/cGMP increase on sensorimotor gating modulation during dopamine hyperfunction. METHODS Mice were treated with NO donors and subjected to the PPI test. Treatment with the NO donor sodium nitroprusside was preceded by pretreatment with a soluble guanylate cyclase (sGC) inhibitor. Additionally, the mice were treated with NO donors and phosphodiesterases inhibitors prior to amphetamine treatment. RESULTS Pretreatment with the NO donors enhanced the PPI response and attenuated the amphetamine-disruptive effects on the PPI. The sGC inhibitor did not modify the sodium nitroprusside effects. Additionally, the cGMP increase induced by a specific phosphodiesterase inhibitor did not modify the amphetamine-disruptive effect. CONCLUSIONS This study provides the first demonstration that an increase in NO can improve the PPI response and block the amphetamine-disruptive effects on the PPI response. Our data are consistent with recent clinical results. However, these effects do not appear to be related to an increase in cGMP levels, and further investigation is thus required.
Collapse
|
23
|
Del-Bel E, Padovan-Neto FE, Szawka RE, da-Silva CA, Raisman-Vozari R, Anselmo-Franci J, Romano-Dutra AC, Guimaraes FS. Counteraction by nitric oxide synthase inhibitor of neurochemical alterations of dopaminergic system in 6-OHDA-lesioned rats under L-DOPA treatment. Neurotox Res 2013; 25:33-44. [PMID: 23807548 DOI: 10.1007/s12640-013-9406-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/21/2022]
Abstract
Nitric oxide synthase inhibitors reduce L-3, (Del-Bel et al., Cell Mol Neurobiol 25(2):371-392, 2005) 4-dihydroxyphenylalanine (L-DOPA)-induced abnormal motor effects subsequent to depletion of dopaminergic neurons in rodents and non-human primates. The present study used quantitative high-performance liquid chromatography to analyze, for the first time, dopamine metabolism in striatum of rats in order to elucidate the mechanism of action of the nitric oxide synthase inhibitors. Adult male Wistar rats received unilateral microinjection of saline (sham) or 6-hydroxydopamine (6-OHDA-lesioned) in the medial forebrain bundle. Past 3 weeks, rats were treated during 21 days with L-DOPA/benserazide (30 mg/kg/7.5 mg/kg, respectively, daily). On the 22nd day rats received an intraperitoneal (i.p.) injection of either vehicle or 7-nitroindazole, a preferential neuronal nitric oxide synthase inhibitor before L-DOPA. Abnormal involuntary movements and rotarod test were assessed as behavioral correlate of motor responses. Lesion intensity was evaluated through tyrosine hydroxylase immunohystochemical reaction. Dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and an extent of dopamine striatal tissue levels/dopamine metabolism were measured in the striatum. Lesion with 6-OHDA decreased dopamine, DOPAC, and DOPAC/dopamine ratio in the lesioned striatum. L-DOPA treatment induced abnormal involuntary movements and increased DOPAC/dopamine ratio (nearly five times) in the lesioned striatum. L-DOPA-induced dyskinesia was mitigated by 7-nitroindazole, which also decreased dopamine turnover, dopamine and DOPAC levels. Our results revealed an almost two times increase in dopamine content in the non-lesioned striatum of 6-OHDA-lesioned rats. Reduction of striatal DOPAC/dopamine ratio in dyskinetic rats may suggest an increase in the dopamine availability. Our data confirm contribution of nitrergic transmission in the pathogenesis of L-DOPA-induced dyskinesia with potential utilization of nitric oxide synthase inhibitors for treatment.
Collapse
Affiliation(s)
- Elaine Del-Bel
- Department of Morphology, Physiology and Pathology, School of Odontology, University of São Paulo, Campus Ribeirão Preto, Av. Café S/N, Ribeirão Preto, SP, 14040-904, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lazzarini M, Martin S, Mitkovski M, Vozari RR, Stühmer W, Bel ED. Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia 2013; 61:1084-100. [PMID: 23595698 DOI: 10.1002/glia.22496] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/22/2013] [Indexed: 01/09/2023]
Abstract
Neuron-glia interactions play a key role in maintaining and regulating the central nervous system. Glial cells are implicated in the function of dopamine neurons and regulate their survival and resistance to injury. Parkinson's disease is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, decreased striatal dopamine levels and consequent onset of extrapyramidal motor dysfunction. Parkinson's disease is a common chronic, neurodegenerative disorder with no effective protective treatment. In the 6-OHDA mouse model of Parkinson's disease, doxycycline administered at a dose that both induces/represses conditional transgene expression in the tetracycline system, mitigates the loss of dopaminergic neurons in the substantia nigra compacta and nerve terminals in the striatum. This protective effect was associated with: (1) a reduction of microglia in normal mice as a result of doxycycline administration per se; (2) a decrease in the astrocyte and microglia response to the neurotoxin 6-OHDA in the globus pallidus and substantia nigra compacta, and (3) the astrocyte reaction in the striatum. Our results suggest that doxycycline blocks 6-OHDA neurotoxicity in vivo by inhibiting microglial and astrocyte expression. This action of doxycycline in nigrostriatal dopaminergic neuron protection is consistent with a role of glial cells in Parkinson's disease neurodegeneration. The neuroprotective effect of doxycycline may be useful in preventing or slowing the progression of Parkinson's disease and other neurodegenerative diseases linked to glia function.
Collapse
Affiliation(s)
- Marcio Lazzarini
- Department of Morphology, Physiology and Pathology, School of Odontology of Ribeirão Preto (FORP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Padovan-Neto FE, Ferreira NR, de Oliveira-Tavares D, de Aguiar D, da Silva CA, Raisman-Vozari R, Del Bel E. Anti-dyskinetic effect of the neuronal nitric oxide synthase inhibitor is linked to decrease of FosB/DeltaFosB expression. Neurosci Lett 2013; 541:126-31. [DOI: 10.1016/j.neulet.2013.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/02/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
|
26
|
Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol Rev 2013; 65:171-222. [PMID: 23319549 DOI: 10.1124/pr.111.005678] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) remains the most effective symptomatic treatment of Parkinson's disease (PD). However, long-term administration of L-DOPA is marred by the emergence of abnormal involuntary movements, i.e., L-DOPA-induced dyskinesia (LID). Years of intensive research have yielded significant progress in the quest to elucidate the mechanisms leading to the development and expression of dyskinesia and maintenance of the dyskinetic state, but the search for a complete understanding is still ongoing. Herein, we summarize the current knowledge of the pharmacology of LID in PD. Specifically, we review evidence gathered from postmortem and pharmacological studies, both preclinical and clinical, and discuss the involvement of dopaminergic and nondopaminergic systems, including glutamatergic, opioid, serotonergic, γ-aminobutyric acid (GABA)-ergic, adenosine, cannabinoid, adrenergic, histaminergic, and cholinergic systems. Moreover, we discuss changes occurring in transcription factors, intracellular signaling, and gene expression in the dyskinetic phenotype. Inasmuch as a multitude of neurotransmitters and receptors play a role in the etiology of dyskinesia, we propose that to optimally alleviate this motor complication, it may be necessary to develop combined treatment approaches that will target simultaneously more than one neurotransmitter system. This could be achieved via three ways as follows: 1) by developing compounds that will interact simultaneously to a multitude of receptors with the required agonist/antagonist effect at each target, 2) by targeting intracellular signaling cascades where the signals mediated by multiple receptors converge, and/or 3) to regulate gene expression in a manner that has effects on signaling by multiple pathways.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Mitkovski M, Padovan-Neto FE, Raisman-Vozari R, Ginestet L, da-Silva CA, Del-Bel EA. Investigations into Potential Extrasynaptic Communication between the Dopaminergic and Nitrergic Systems. Front Physiol 2012; 3:372. [PMID: 23055978 PMCID: PMC3457048 DOI: 10.3389/fphys.2012.00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide is unconstrained by cell membranes and can therefore act along a broad distance as a volume transmitter. Spillover of nitric oxide between neurons may have a major impact on central nervous system diseases and particularly on neurodegeneration. There is evidence whereby communication between nitrergic and dopaminergic systems plays an essential role in the control of the nigrostriatal pathway. However, there is sparse information for either the coexistence or overlap of nitric oxide and dopaminergic structures. The dual localization of immunoreactivity for nitric oxide synthase (NOS) and tyrosine hydroxylase, enzymes responsible for the synthesis of nitric oxide and dopamine, respectively, was examined in neurons of the nigrostriatal pathway in the rat brain by means of a double-immunohistochemical method and confocal laser scanning microscopy, acquired at the resolution limit. After perfusional fixation, the brains were cut and double-immunostained. A proximity analysis of tyrosine hydroxylase and NOS structures was done using binary masks generated from the respective maximum projections, using confocal laser microscopy. Unrevealed regions were determined somatodendritic positive for both NOS and tyrosine hydroxylase, within an image limit resolution at 2 μm-wide margin. The described interconnected localization of nNOS(+) and TH(+) containing neuronal fibers and cells bodies in the nigrostriatal pathway propose a close anatomical link between the two neurotransmitters.
Collapse
Affiliation(s)
- M Mitkovski
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | | | | | | | | | | |
Collapse
|