1
|
Mohamed NMM, Meredith FL, Rennie KJ. Inhibition of Ionic Currents by Fluoxetine in Vestibular Calyces in Different Epithelial Loci. Int J Mol Sci 2024; 25:8801. [PMID: 39201487 PMCID: PMC11354711 DOI: 10.3390/ijms25168801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 μM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 μM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 μM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance.
Collapse
Affiliation(s)
| | | | - Katherine J. Rennie
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.M.M.M.); (F.L.M.)
| |
Collapse
|
2
|
Meredith FL, Vu TA, Gehrke B, Benke TA, Dondzillo A, Rennie KJ. Expression of hyperpolarization-activated current ( Ih) in zonally defined vestibular calyx terminals of the crista. J Neurophysiol 2023; 129:1468-1481. [PMID: 37198134 PMCID: PMC10259860 DOI: 10.1152/jn.00135.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Tiffany A Vu
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Brandon Gehrke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Timothy A Benke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Anna Dondzillo
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
3
|
Fu M, Zhang L, Xie X, Wang N, Xiao Z. Differential contributions of voltage-gated potassium channel subunits in enhancing temporal coding in the bushy cells of the ventral cochlear nucleus. J Neurophysiol 2021; 125:1954-1972. [PMID: 33852808 DOI: 10.1152/jn.00435.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding.NEW & NOTEWORTHY This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.
Collapse
Affiliation(s)
- Mingyu Fu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Xie
- Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ningqian Wang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
4
|
Meredith FL, Rennie KJ. Persistent and resurgent Na + currents in vestibular calyx afferents. J Neurophysiol 2020; 124:510-524. [PMID: 32667253 DOI: 10.1152/jn.00124.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
5
|
Spaiardi P, Tavazzani E, Manca M, Russo G, Prigioni I, Biella G, Giunta R, Johnson SL, Marcotti W, Masetto S. K + Accumulation and Clearance in the Calyx Synaptic Cleft of Type I Mouse Vestibular Hair Cells. Neuroscience 2020; 426:69-86. [PMID: 31846752 PMCID: PMC6985899 DOI: 10.1016/j.neuroscience.2019.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Vestibular organs of Amniotes contain two types of sensory cells, named Type I and Type II hair cells. While Type II hair cells are contacted by several small bouton nerve terminals, Type I hair cells receive a giant terminal, called a calyx, which encloses their basolateral membrane almost completely. Both hair cell types release glutamate, which depolarizes the afferent terminal by binding to AMPA post-synaptic receptors. However, there is evidence that non-vesicular signal transmission also occurs at the Type I hair cell-calyx synapse, possibly involving direct depolarization of the calyx by K+ exiting the hair cell. To better investigate this aspect, we performed whole-cell patch-clamp recordings from mouse Type I hair cells or their associated calyx. We found that [K+] in the calyceal synaptic cleft is elevated at rest relative to the interstitial (extracellular) solution and can increase or decrease during hair cell depolarization or repolarization, respectively. The change in [K+] was primarily driven by GK,L, the low-voltage-activated, non-inactivating K+ conductance specifically expressed by Type I hair cells. Simple diffusion of K+ between the cleft and the extracellular compartment appeared substantially restricted by the calyx inner membrane, with the ion channels and active transporters playing a crucial role in regulating intercellular [K+]. Calyx recordings were consistent with K+ leaving the synaptic cleft through postsynaptic voltage-gated K+ channels involving KV1 and KV7 subunits. The above scenario is consistent with direct depolarization and hyperpolarization of the calyx membrane potential by intercellular K+.
Collapse
Affiliation(s)
- P Spaiardi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - E Tavazzani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - M Manca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - G Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - I Prigioni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - G Biella
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - R Giunta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - S L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - W Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - S Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
6
|
Kwan A, Forbes PA, Mitchell DE, Blouin JS, Cullen KE. Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun 2019; 10:1904. [PMID: 31015434 PMCID: PMC6478681 DOI: 10.1038/s41467-019-09738-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/21/2019] [Indexed: 11/09/2022] Open
Abstract
Galvanic vestibular stimulation (GVS) uses the external application of electrical current to selectively target the vestibular system in humans. Despite its recent popularity for the assessment/treatment of clinical conditions, exactly how this non-invasive tool activates the vestibular system remains an open question. Here we directly investigate single vestibular afferent responses to GVS applied to the mastoid processes of awake-behaving monkeys. Transmastoid GVS produces robust and parallel activation of both canal and otolith afferents. Notably, afferent activation increases with intrinsic neuronal variability resulting in constant GVS-evoked neuronal detection thresholds across all afferents. Additionally, afferent tuning differs for GVS versus natural self-motion stimulation. Using a stochastic model of repetitive activity in afferents, we largely explain the main features of GVS-evoked vestibular afferent dynamics. Taken together, our results reveal the neural substrate underlying transmastoid GVS-evoked perceptual, ocular and postural responses-information that is essential to advance GVS applicability for biomedical uses in humans.
Collapse
Affiliation(s)
- Annie Kwan
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Patrick A Forbes
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3000 CA, The Netherlands.,Department of BioMechanical Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands.,School of Kinesiology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Diana E Mitchell
- Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205, MD, USA.
| |
Collapse
|
7
|
Curthoys I, Burgess AM, Goonetilleke SC. Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (>250 Hz) sound and vibration. Hear Res 2019; 373:59-70. [DOI: 10.1016/j.heares.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
|
8
|
Meredith FL, Rennie KJ. Regional and Developmental Differences in Na + Currents in Vestibular Primary Afferent Neurons. Front Cell Neurosci 2018; 12:423. [PMID: 30487736 PMCID: PMC6246661 DOI: 10.3389/fncel.2018.00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 02/04/2023] Open
Abstract
The vestibular system relays information about head position via afferent nerve fibers to the brain in the form of action potentials. Voltage-gated Na+ channels in vestibular afferents drive the initiation and propagation of action potentials, but their expression during postnatal development and their contributions to firing in diverse mature afferent populations are unknown. Electrophysiological techniques were used to determine Na+ channel subunit types in vestibular calyx-bearing afferents at different stages of postnatal development. We used whole cell patch clamp recordings in thin slices of gerbil crista neuroepithelium to investigate Na+ channels and firing patterns in central zone (CZ) and peripheral zone (PZ) afferents. PZ afferents are exclusively dimorphic, innervating type I and type II hair cells, whereas CZ afferents can form dimorphs or calyx-only terminals which innervate type I hair cells alone. All afferents expressed tetrodotoxin (TTX)-sensitive Na+ currents, but TTX-sensitivity varied with age. During the fourth postnatal week, 200–300 nM TTX completely blocked sodium currents in PZ and CZ calyces. By contrast, in immature calyces [postnatal day (P) 5–11], a small component of peak sodium current remained in 200 nM TTX. Application of 1 μM TTX, or Jingzhaotoxin-III plus 200 nM TTX, abolished sodium current in immature calyces, suggesting the transient expression of voltage-gated sodium channel 1.5 (Nav1.5) during development. A similar TTX-insensitive current was found in early postnatal crista hair cells (P5–9) and constituted approximately one third of the total sodium current. The Nav1.6 channel blocker, 4,9-anhydrotetrodotoxin, reduced a component of sodium current in immature and mature calyces. At 100 nM 4,9-anhydrotetrodotoxin, peak sodium current was reduced on average by 20% in P5–14 calyces, by 37% in mature dimorphic PZ calyces, but by less than 15% in mature CZ calyx-only terminals. In mature PZ calyces, action potentials became shorter and broader in the presence of 4,9-anhydrotetrodotoxin implicating a role for Nav1.6 channels in firing in dimorphic afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
9
|
Kirk ME, Meredith FL, Benke TA, Rennie KJ. AMPA receptor-mediated rapid EPSCs in vestibular calyx afferents. J Neurophysiol 2017; 117:2312-2323. [PMID: 28298303 DOI: 10.1152/jn.00394.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/21/2023] Open
Abstract
In the vestibular periphery neurotransmission between hair cells and primary afferent nerves occurs via specialized ribbon synapses. Type I vestibular hair cells (HCIs) make synaptic contacts with calyx terminals, which enclose most of the HCI basolateral surface. To probe synaptic transmission, whole cell patch-clamp recordings were made from calyx afferent terminals isolated together with their mature HCIs from gerbil crista. Neurotransmitter release was measured as excitatory postsynaptic currents (EPSCs) in voltage clamp. Spontaneous EPSCs were classified as simple or complex. Simple events exhibited a rapid rise time and a fast monoexponential decay (time constant < 1 ms). The remaining events, constituting ~40% of EPSCs, showed more complex characteristics. Extracellular Sr2+ greatly increased EPSC frequency, and EPSCs were blocked by the AMPA receptor blocker NBQX. The role of presynaptic Ca2+ channels was assessed by application of the L-type Ca2+ channel blocker nifedipine (20 µM), which reduced EPSC frequency. In contrast, the L-type Ca2+ channel opener BAY K 8644 increased EPSC frequency. Cyclothiazide increased the decay time constant of averaged simple EPSCs by approximately twofold. The low-affinity AMPA receptor antagonist γ-d-glutamylglycine (2 mM) reduced the proportion of simple EPSCs relative to complex events, indicating glutamate accumulation in the restricted cleft between HCI and calyx. In crista slices EPSC frequency was greater in central compared with peripheral calyces, which may be due to greater numbers of presynaptic ribbons in central hair cells. Our data support a role for L-type Ca2+ channels in spontaneous release and demonstrate regional variations in AMPA-mediated quantal transmission at the calyx synapse.NEW & NOTEWORTHY In vestibular calyx terminals of mature cristae we find that the majority of excitatory postsynaptic currents (EPSCs) are rapid monophasic events mediated by AMPA receptors. Spontaneous EPSCs are reduced by an L-type Ca2+ channel blocker and notably enhanced in extracellular Sr2+ EPSC frequency is greater in central areas of the crista compared with peripheral areas and may be associated with more numerous presynaptic ribbons in central hair cells.
Collapse
Affiliation(s)
- Matthew E Kirk
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Timothy A Benke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Departments of Pediatrics, Neurology, and Pharmacology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; .,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
10
|
Channeling your inner ear potassium: K+ channels in vestibular hair cells. Hear Res 2016; 338:40-51. [DOI: 10.1016/j.heares.2016.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
|
11
|
The response of guinea pig primary utricular and saccular irregular neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS). Hear Res 2015; 331:131-43. [PMID: 26626360 DOI: 10.1016/j.heares.2015.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023]
Abstract
UNLABELLED This study sought to characterize the response of mammalian primary otolithic neurons to sound and vibration by measuring the resting discharge rates, thresholds for increases in firing rate and supra-threshold sensitivity functions of guinea pig single primary utricular and saccular afferents. Neurons with irregular resting discharge were activated in response to bone conducted vibration (BCV) and air conducted sound (ACS) for frequencies between 100 Hz and 3000 Hz. The location of neurons was verified by labelling with neurobiotin. Many afferents from both maculae have very low or zero resting discharge, with saccular afferents having on average, higher resting rates than utricular afferents. Most irregular utricular and saccular afferents can be evoked by both BCV and ACS. For BCV stimulation: utricular and saccular neurons show similar low thresholds for increased firing rate (around 0.02 g on average) for frequencies from 100 Hz to 750 Hz. There is a steep increase in rate change threshold for BCV frequencies above 750 Hz. The suprathreshold sensitivity functions for BCV were similar for both utricular and saccular neurons, with, at low frequencies, very steep increases in firing rate as intensity increased. For ACS stimulation: utricular and saccular neurons can be activated by high intensity stimuli for frequencies from 250 Hz to 3000 Hz with similar flattened U-shaped tuning curves with lowest thresholds for frequencies around 1000-2000 Hz. The average ACS thresholds for saccular afferents across these frequencies is about 15-20 dB lower than for utricular neurons. The suprathreshold sensitivity functions for ACS were similar for both utricular and saccular neurons. Both utricular and saccular afferents showed phase-locking to BCV and ACS, extending up to frequencies of at least around 1500 Hz for BCV and 3000 Hz for ACS. Phase-locking at low frequencies (e.g. 100 Hz) imposes a limit on the neural firing rate evoked by the stimulus since the neurons usually fire one spike per cycle of the stimulus. CONCLUSION These results are in accord with the hypothesis put forward by Young et al. (1977) that each individual cycle of the waveform, either BCV or ACS, is the effective stimulus to the receptor hair cells on either macula. We suggest that each cycle of the BCV or ACS stimulus causes fluid displacement which deflects the short, stiff, hair bundles of type I receptors at the striola and so triggers the phase-locked neural response of primary otolithic afferents.
Collapse
|