1
|
Qiao D, Qi Y, Zhang X, Wen Y, Huang Y, Li Y, Liu P, Li G, Liu Z. The possible effect of inflammation on non-suicidal self-injury in adolescents with depression: a mediator of connectivity within corticostriatal reward circuitry. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02709-6. [PMID: 40186642 DOI: 10.1007/s00787-025-02709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Non-suicidal self-injury (NSSI) in adolescent depression is a prevalent and clinically significant behavior linked to dysregulated peripheral inflammation and corticostriatal circuitry dysfunction. However, the neuroimmune mechanisms bridging these systems remain poorly understood. Here, we combined peripheral cytokine profiling with static/dynamic functional connectivity (sFC/dFC) analysis to investigate the potential influence of inflammaton on corticostriatal circuit related to NSSI. A set of peripheral blood inflammatory markers and resting-state functional magnetic resonance imaging (rs-fMRI) were collected in depression with NSSI (NSSI+), depression without NSSI (NSSI-), and healthy controls (HC). We first ascertain group differences in level of pro- and anti-inflammatory cytokines. And using ventral/dorsal striatal seeds, we compared whole-brain, voxel-wise sFC and dFC differences across three groups. Further, we tested the mediation effects of connectivity in the association between inflammatory markers and NSSI frequency. NSSI+ group exhibited elevated pro-inflammatory cytokines (C-reactive protein (CRP), interleukin (IL)-1, and IL-6) whereas reduced anti-inflammatory cytokines (IL-10), compared to NSSI- and HC. Neuroimaging analysis revealed corticostriatal dysconnectivity mainly characterized by static hyperconnectivity between dorsal striatum and thalamus, dynamic instability in dorsal striatum-lingual pathways, and dynamic rigidity in ventral striatum-prefrontal/temporal/occipital gyrus circuits. Critically, sFC of dorsal striatum-thalamus and dFC of dorsal striatum-lingual gyrus mediated the prospective association between altered CRP and NSSI frequency, establishing corticostriatal circuits as conduits for inflammatory effects on NSSI. By bridging molecular psychiatry with circuit neuroscience, this work advances precision management of NSSI in adolescent depression, prioritizing biomarker-driven strategies to disrupt neuroimmune maladaptation.
Collapse
Affiliation(s)
- Dan Qiao
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Yirun Qi
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Xiaoyu Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Yujiao Wen
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Yangxi Huang
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Yiran Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Gaizhi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Apicella P, Martel AC, Marche K. Striatal function scrutinized through the PAN-TAN-FSI triumvirate. Front Cell Neurosci 2025; 19:1572657. [PMID: 40201383 PMCID: PMC11975669 DOI: 10.3389/fncel.2025.1572657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Understanding the information encoded by distinct components of the neuronal circuitry in the striatum represents an avenue for elucidating the role of this subcortical region in adaptive behavior and its dysfunction in pathological conditions. In behaving animals, conventional single neuron recordings generally differentiated between three main electrophysiologically identified neuron subtypes in the striatum, referred to as phasically active neurons (PANs), tonically active neurons (TANs), and fast-spiking interneurons (FSIs), assumed to correspond to GABAergic spiny projection neurons, cholinergic interneurons, and parvalbumin-containing GABAergic interneurons, respectively. Considerable research has been devoted to exploring the behavior-related activities of neurons classified electrophysiologically into PANs, TANs, and FSIs in animals engaged in task performance, mostly monkeys. Although precise neuron identification remains a major challenge, such electrophysiological studies have provided insights into the functional properties of presumed distinct striatal neuronal populations. In this review, we will focus on current ideas about the functions subserved by these neuron subtypes, emphasizing their link to specific aspects of behaviors. We will also underline the issues that are yet to be resolved regarding the classification of striatal neurons into distinct subgroups which emphasize the importance of considering the potential overlap among electrophysiological characteristics and the molecular diversity of neuron types in the striatum.
Collapse
Affiliation(s)
- Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, Marseille, France
| | | | | |
Collapse
|
3
|
Bouabid S, Zhang L, Vu MAT, Tang K, Graham BM, Noggle CA, Howe MW. Distinct spatially organized striatum-wide acetylcholine dynamics for the learning and extinction of Pavlovian associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.10.602947. [PMID: 39071401 PMCID: PMC11275942 DOI: 10.1101/2024.07.10.602947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Striatal acetylcholine (ACh) signaling has been proposed to counteract reinforcement signals to promote extinction and behavioral flexibility. ACh dips to cues and rewards may open a temporal window for associative plasticity to occur, while elevations may promote extinction. Changes in multi-phasic striatal ACh signals have been widely reported during learning, but how and where signals are distributed to enable region-specific plasticity for the learning and degradation of cue-reward associations is poorly understood. We used array fiber photometry in mice to investigate how ACh release across the striatum evolves during learning and extinction of Pavlovian associations. We report a topographic organization of opposing changes in ACh release to cues, rewards, and consummatory actions across distinct striatum regions. We localized reward prediction error encoding in particular phases of the ACh dynamics to a specific region of the anterior dorsal striatum (aDS). Positive prediction errors in the aDS were expressed in ACh dips, and negative prediction errors in long latency ACh elevations. Silencing aDS ACh release impaired behavioral extinction, suggesting a role for ACh elevations in down-regulating cue-reward associations. Dopamine release in aDS dipped for cues during extinction, but glutamate input onto cholinergic interneurons did not change, suggesting an intrastriatal mechanism for the emergence of ACh elevations. Our large scale measurements indicate how and where ACh dynamics can shape region-specific plasticity to gate learning and promote extinction of Pavlovian associations.
Collapse
Affiliation(s)
- Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Liangzhu Zhang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mai-Anh T. Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Kylie Tang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Benjamin M. Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Christian A. Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mark W. Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Duhne M, Mohebi A, Kim K, Pelattini L, Berke JD. A mismatch between striatal cholinergic pauses and dopaminergic reward prediction errors. Proc Natl Acad Sci U S A 2024; 121:e2410828121. [PMID: 39365823 PMCID: PMC11474027 DOI: 10.1073/pnas.2410828121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024] Open
Abstract
Striatal acetylcholine and dopamine critically regulate movement, motivation, and reward-related learning. Pauses in cholinergic interneuron (CIN) firing are thought to coincide with dopamine pulses encoding reward prediction errors (RPE) to jointly enable synaptic plasticity. Here, we examine the firing of identified CINs during reward-guided decision-making in freely moving rats and compare this firing to dopamine release. Relationships between CINs, dopamine, and behavior varied strongly by subregion. In the dorsal-lateral striatum, a Go! cue evoked burst-pause CIN spiking, followed by a brief dopamine pulse that was unrelated to RPE. In the dorsal-medial striatum, this cue evoked only a CIN pause, that was curtailed by a movement-selective rebound in firing. Finally, in the ventral striatum, a reward cue evoked RPE-coding increases in both dopamine and CIN firing, without a consistent pause. Our results demonstrate a spatial and temporal dissociation between CIN pauses and dopamine RPE signals and will inform future models of striatal information processing under both normal and pathological conditions.
Collapse
Affiliation(s)
- Mariana Duhne
- Department of Neurology, University of California, San Francisco, CA94158
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, CA94158
| | - Kyoungjun Kim
- Department of Neurology, University of California, San Francisco, CA94158
| | - Lilian Pelattini
- Department of Neurology, University of California, San Francisco, CA94158
| | - Joshua D. Berke
- Department of Neurology, University of California, San Francisco, CA94158
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, CA94107
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA94158
- Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| |
Collapse
|
5
|
Martel AC, Apicella P. Insights into the interaction between time and reward prediction on the activity of striatal tonically active neurons: A pilot study in rhesus monkeys. Physiol Rep 2024; 12:e70037. [PMID: 39245818 PMCID: PMC11381318 DOI: 10.14814/phy2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Prior studies have documented the role of the striatum and its dopaminergic input in time processing, but the contribution of local striatal cholinergic innervation has not been specifically investigated. To address this issue, we recorded the activity of tonically active neurons (TANs), thought to be cholinergic interneurons in the striatum, in two male macaques performing self-initiated movements after specified intervals in the seconds range have elapsed. The behavioral data showed that movement timing was adjusted according to the temporal requirements. About one-third of all recorded TANs displayed brief depressions in firing in response to the cue that indicates the interval duration, and the strength of these modulations was, in some instances, related to the timing of movement. The rewarding outcome of actions also impacted TAN activity, as reflected by stronger responses to the cue paralleled by weaker responses to reward when monkeys performed correctly timed movements over consecutive trials. It therefore appears that TAN responses may act as a start signal for keeping track of time and reward prediction could be incorporated in this signaling function. We conclude that the role of the striatal cholinergic TAN system in time processing is embedded in predicting rewarding outcomes during timing behavior.
Collapse
Affiliation(s)
- A C Martel
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - P Apicella
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
6
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
7
|
Soghomonian JJ. The cortico-striatal circuitry in autism-spectrum disorders: a balancing act. Front Cell Neurosci 2024; 17:1329095. [PMID: 38273975 PMCID: PMC10808402 DOI: 10.3389/fncel.2023.1329095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The basal ganglia are major targets of cortical inputs and, in turn, modulate cortical function via their projections to the motor and prefrontal cortices. The role of the basal ganglia in motor control and reward is well documented and there is also extensive evidence that they play a key role in social and repetitive behaviors. The basal ganglia influence the activity of the cerebral cortex via two major projections from the striatum to the output nuclei, the globus pallidus internus and the substantia nigra, pars reticulata. This modulation involves a direct projection known as the direct pathway and an indirect projection via the globus pallidus externus and the subthalamic nucleus, known as the indirect pathway. This review discusses the respective contribution of the direct and indirect pathways to social and repetitive behaviors in neurotypical conditions and in autism spectrum disorders.
Collapse
|
8
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
9
|
Contreras-Rodriguez O, Reales-Moreno M, Fernández-Barrès S, Cimpean A, Arnoriaga-Rodríguez M, Puig J, Biarnés C, Motger-Albertí A, Cano M, Fernández-Real JM. Consumption of ultra-processed foods is associated with depression, mesocorticolimbic volume, and inflammation. J Affect Disord 2023; 335:340-348. [PMID: 37207947 DOI: 10.1016/j.jad.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The consumption of ultra-processed foods and drinks (UPF) has been associated with depression and inflammation and preclinical studies showed that some UPF components disrupt the amygdala-hippocampal complex. We combine diet, clinical and brain imaging data to investigate the relationship between the UPF consumption, depressive symptoms, and brain volumes in humans, considering interactions with obesity, and the mediation effect of inflammation biomarkers. METHODS One-hundred fifty-two adults underwent diet, depressive symptoms, anatomic magnetic resonance imaging assessments and laboratory tests. Relationships between the % of UPF consumption (in grams) of the total diet, depressive symptoms, and gray matter brain volumes were explored using several adjusted regression models, and in interaction with the presence of obesity. Whether inflammatory biomarkers (i.e., white blood cell count, lipopolysaccharide-binding protein, c-reactive protein) mediate the previous associations was investigated using R mediation package. RESULTS High UPF consumption was associated with higher depressive symptoms in all participants (β = 0.178, CI = 0.008-0.261) and in those with obesity (β = 0.214, CI = -0.004-0.333). Higher consumption was also associated with lower volumes in the posterior cingulate cortex and the left amygdala, which in the participants with obesity also encompassed the left ventral putamen and the dorsal frontal cortex. White blood count levels mediated the association between UPF consumption and depressive symptoms (p = 0.022). LIMITATIONS The present study precludes any causal conclusions. CONCLUSIONS UPF consumption is associated with depressive symptoms and lower volumes within the mesocorticolimbic brain network implicated in reward processes and conflict monitoring. Associations were partially dependent on obesity and white blood cell count.
Collapse
Affiliation(s)
- Oren Contreras-Rodriguez
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Health Institute Carlos III (ISCIII) and CIBERSAM, Madrid, Spain.
| | - Marta Reales-Moreno
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Spain
| | | | - Anna Cimpean
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Josep Puig
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
| | - Carles Biarnés
- Department of Radiology-Medical Imaging (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain
| | - Anna Motger-Albertí
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Marta Cano
- Health Institute Carlos III (ISCIII) and CIBERSAM, Madrid, Spain; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Manuel Fernández-Real
- Department of Medical Sciences, School of Medicine, University of Girona, Spain; Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain.
| |
Collapse
|
10
|
Basanisi R, Marche K, Combrisson E, Apicella P, Brovelli A. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals. J Neurosci 2023; 43:3339-3352. [PMID: 37015808 PMCID: PMC10162459 DOI: 10.1523/jneurosci.0952-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 04/06/2023] Open
Abstract
Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. RPE signals are encoded in the neural activity of multiple brain areas, such as midbrain dopaminergic neurons, prefrontal cortex, and striatum. However, it remains unclear how these signals are expressed through anatomically and functionally distinct subregions of the striatum. In the current study, we examined to which extent RPE signals are represented across different striatal regions. To do so, we recorded local field potentials (LFPs) in sensorimotor, associative, and limbic striatal territories of two male rhesus monkeys performing a free-choice probabilistic learning task. The trial-by-trial evolution of RPE during task performance was estimated using a reinforcement learning model fitted on monkeys' choice behavior. Overall, we found that changes in beta band oscillations (15-35 Hz), after the outcome of the animal's choice, are consistent with RPE encoding. Moreover, we provide evidence that the signals related to RPE are more strongly represented in the ventral (limbic) than dorsal (sensorimotor and associative) part of the striatum. To conclude, our results suggest a relationship between striatal beta oscillations and the evaluation of outcomes based on RPE signals and highlight a major contribution of the ventral striatum to the updating of learning processes.SIGNIFICANCE STATEMENT Reward prediction error (RPE) signals are crucial for reinforcement learning and decision-making as they quantify the mismatch between predicted and obtained rewards. Current models suggest that RPE signals are encoded in the neural activity of multiple brain areas, including the midbrain dopaminergic neurons, prefrontal cortex and striatum. However, it remains elusive whether RPEs recruit anatomically and functionally distinct subregions of the striatum. Our study provides evidence that RPE-related modulations in local field potential (LFP) power are dominant in the striatum. In particular, they are stronger in the rostro-ventral rather than the caudo-dorsal striatum. Our findings contribute to a better understanding of the role of striatal territories in reward-based learning and may be relevant for neuropsychiatric and neurologic diseases that affect striatal circuits.
Collapse
Affiliation(s)
- Ruggero Basanisi
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Kevin Marche
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
- Wellcome Center for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Etienne Combrisson
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Paul Apicella
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix Marseille Université, Unité Mixte de Recherche 7289 Centre National de la Recherche Scientifique, Marseille 13005, France
| |
Collapse
|
11
|
Muscarinic acetylcholine receptors for psychotic disorders: bench-side to clinic. Trends Pharmacol Sci 2022; 43:1098-1112. [PMID: 36273943 DOI: 10.1016/j.tips.2022.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
Modern interest in muscarinic acetylcholine receptor (mAChR) activators for schizophrenia began in the 1990s when xanomeline, an M1/M4-preferring mAChR agonist developed for cognitive symptoms of Alzheimer's disease (AD), had unexpected antipsychotic activity. However, strategies to address tolerability concerns associated with activation of peripheral mAChRs were not available at that time. The discovery of specific targeted ligands and combination treatments to reduce peripheral mAChR engagement have advanced the potential of mAChR activators as effective treatments for psychotic disorders. This review provides perspectives on the background of the identification of mAChRs as potential antipsychotics, advances in the preclinical understanding of mAChRs as targets, and the current state of mAChR activators under active clinical development for schizophrenia.
Collapse
|
12
|
Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Mol Psychiatry 2022; 27:1502-1514. [PMID: 34789847 PMCID: PMC9106808 DOI: 10.1038/s41380-021-01364-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023]
Abstract
Cholinergic interneurons (CINs) in the striatum respond to salient stimuli with a multiphasic response, including a pause, in neuronal activity. Slice-physiology experiments have shown the importance of dopamine D2 receptors (D2Rs) in regulating CIN pausing, yet the behavioral significance of the CIN pause and its regulation by dopamine in vivo is still unclear. Here, we show that D2R upregulation in CINs of the nucleus accumbens (NAc) lengthens the pause in CIN activity ex vivo and enlarges a stimulus-evoked decrease in acetylcholine (ACh) levels during behavior. This enhanced dip in ACh levels is associated with a selective deficit in the learning to inhibit responding in a Go/No-Go task. Our data demonstrate, therefore, the importance of CIN D2Rs in modulating the CIN response induced by salient stimuli and point to a role of this response in inhibitory learning. This work has important implications for brain disorders with altered striatal dopamine and ACh function, including schizophrenia and attention-deficit hyperactivity disorder (ADHD).
Collapse
|
13
|
Nishioka M, Kamada T, Nakata A, Shiokawa N, Kinoshita A, Hata T. Intra-dorsal striatal acetylcholine M1 but not dopaminergic D1 or glutamatergic NMDA receptor antagonists inhibit consolidation of duration memory in interval timing. Behav Brain Res 2022; 419:113669. [PMID: 34800548 DOI: 10.1016/j.bbr.2021.113669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/02/2022]
Abstract
The striatal beat frequency model assumes that striatal medium spiny neurons encode duration via synaptic plasticity. Muscarinic 1 (M1) cholinergic receptors as well as dopamine and glutamate receptors are important for neural plasticity in the dorsal striatum. Therefore, we investigated the effect of inhibiting these receptors on the formation of duration memory. After sufficient training in a peak interval (PI)-20-s procedure, rats were administered a single or mixed infusion of a selective antagonist for the dopamine D1 receptor (SCH23390, 0.5 µg per side), N-methyl-D-aspartic acid (NMDA)-type glutamate receptor (D-AP5, 3 µg), or M1 receptor (pirenzepine, 10 µg) bilaterally in the dorsal striatum, immediately before initiating a PI-40 s session (shift session). The next day, the rats were tested for new duration memory (40 s) in a session in which no lever presses were reinforced (test session). In the shift session, the performance was comparable irrespective of the drug injected. However, in the test session, the mean peak time (an index of duration memory) of the M1 + NMDA co-blockade group, but not of the D1 + NMDA co-blockade group, was lower than that of the control group (Experiments 1 and 2). In Experiment 3, the effect of the co-blockade of M1 and NMDA receptors was replicated. Moreover, sole blockade of M1 receptors induced the same effect as M1 and NMDA blockade. These results suggest that in the dorsal striatum, the M1 receptor, but not the D1 or NMDA receptors, is involved in the consolidation of duration memory.
Collapse
Affiliation(s)
- Masahiko Nishioka
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Taisuke Kamada
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Atsushi Nakata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Naoko Shiokawa
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Aoi Kinoshita
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
14
|
Ni RJ, Shu YM, Li T, Zhou JN. Whole-Brain Afferent Inputs to the Caudate Nucleus, Putamen, and Accumbens Nucleus in the Tree Shrew Striatum. Front Neuroanat 2021; 15:763298. [PMID: 34795566 PMCID: PMC8593333 DOI: 10.3389/fnana.2021.763298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
Day-active tree shrews have a well-developed internal capsule (ic) that clearly separates the caudate nucleus (Cd) and putamen (Pu). The striatum consists of the Cd, ic, Pu, and accumbens nucleus (Acb). Here, we characterized the cytoarchitecture of the striatum and the whole-brain inputs to the Cd, Pu, and Acb in tree shrews by using immunohistochemistry and the retrograde tracer Fluoro-Gold (FG). Our data show the distribution patterns of parvalbumin (PV), nitric oxide synthase (NOS), calretinin (CR), and tyrosine hydroxylase (TH) immunoreactivity in the striatum of tree shrews, which were different from those observed in rats. The Cd and Pu mainly received inputs from the thalamus, motor cortex, somatosensory cortex, subthalamic nucleus, substantia nigra, and other cortical and subcortical regions, whereas the Acb primarily received inputs from the anterior olfactory nucleus, claustrum, infralimbic cortex, thalamus, raphe nucleus, parabrachial nucleus, ventral tegmental area, and so on. The Cd, Pu, and Acb received inputs from different neuronal populations in the ipsilateral (60, 67, and 63 brain regions, respectively) and contralateral (23, 20, and 36 brain regions, respectively) brain hemispheres. Overall, we demonstrate that there are species differences between tree shrews and rats in the density of PV, NOS, CR, and TH immunoreactivity in the striatum. Additionally, we mapped for the first time the distribution of whole-brain input neurons projecting to the striatum of tree shrews with FG injected into the Cd, Pu, and Acb. The similarities and differences in their brain-wide input patterns may provide new insights into the diverse functions of the striatal subregions.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Mian Shu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China.,Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jiang-Ning Zhou
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Lewis RG, Florio E, Punzo D, Borrelli E. The Brain's Reward System in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:57-69. [PMID: 34773226 DOI: 10.1007/978-3-030-81147-1_4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhythmic gene expression is found throughout the central nervous system. This harmonized regulation can be dependent on- and independent of- the master regulator of biological clocks, the suprachiasmatic nucleus (SCN). Substantial oscillatory activity in the brain's reward system is regulated by dopamine. While light serves as a primary time-giver (zeitgeber) of physiological clocks and synchronizes biological rhythms in 24-h cycles, nonphotic stimuli have a profound influence over circadian biology. Indeed, reward-related activities (e.g., feeding, exercise, sex, substance use, and social interactions), which lead to an elevated level of dopamine, alters rhythms in the SCN and the brain's reward system. In this chapter, we will discuss the influence of the dopaminergic reward pathways on circadian system and the implication of this interplay on human health.
Collapse
Affiliation(s)
- Robert G Lewis
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Ermanno Florio
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Daniela Punzo
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA
| | - Emiliana Borrelli
- School of Medicine, Department of Microbiology and Molecular Genetics, INSERMU1233, Center for Epigenetics and Metabolism, University of California - Irvine, Irvine, CA, USA. .,University of California - Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Dong GH, Dong H, Wang M, Zhang J, Zhou W, Du X, Potenza MN. Dorsal and ventral striatal functional connectivity shifts play a potential role in internet gaming disorder. Commun Biol 2021; 4:866. [PMID: 34262129 PMCID: PMC8280218 DOI: 10.1038/s42003-021-02395-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/24/2021] [Indexed: 02/05/2023] Open
Abstract
Animal models suggest transitions from non-addictive to addictive behavioral engagement are associated with ventral-to-dorsal striatal shifts. However, few studies have examined such features in humans, especially in internet gaming disorder (IGD), a proposed behavioral addiction. We recruited 418 subjects (174 with IGD; 244 with recreational game use (RGU)). Resting-state fMRI data were collected and functional connectivity analyses were performed based on ventral and dorsal striatal seeds. Correlations and follow-up spectrum dynamic causal model (spDCM) analyses were performed to examine relationships between the ventral/dorsal striatum and middle frontal gyrus (MFG). Longitudinal data were also analysed to investigate changes over time. IGD relative to RGU subjects showed lower ventral-striatum-to-MFG (mostly involving supplementary motor area (SMA)) and higher dorsal-striatum-to-MFG functional connectivity. spDCM revealed that left dorsal-striatum-to-MFG connectivity was correlated with IGD severity. Longitudinal data within IGD and RGU groups found greater dorsal striatal connectivity with the MFG in IGD versus RGU subjects. These findings suggest similar ventral-to-dorsal striatal shifts may operate in IGD and traditional addictions. In order to shed light on the underlying neural mechanisms of internet gaming disorder (IGD), Dong et al collected longitudinal resting-state fMRI data from participants with IGD or those who partake in recreational game use. They demonstrated that, consistent with animal models of addiction, dorsal and ventral striatal functional connectivity shifts appeared to play a potential mechanistic role in IGD.
Collapse
Affiliation(s)
- Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China. .,Institute of Psychological Research, Hangzhou Normal University, Hangzhou, P.R. China. .,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, P.R. China.
| | - Haohao Dong
- Department of Psychology, Nanjing University, Nanjing, P.R. China
| | - Min Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China.,Institute of Psychological Research, Hangzhou Normal University, Hangzhou, P.R. China
| | - Jialin Zhang
- School of Psychology, Beijing Normal University, Beijing, China
| | - Weiran Zhou
- Institute of Psychological Research, Hangzhou Normal University, Hangzhou, P.R. China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University, New Haven, CT, USA.,Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
17
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
18
|
Dopaminergic Control of Striatal Cholinergic Interneurons Underlies Cocaine-Induced Psychostimulation. Cell Rep 2021; 31:107527. [PMID: 32320647 DOI: 10.1016/j.celrep.2020.107527] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cocaine drastically elevates dopamine (DA) levels in the striatum, a brain region that is critical to the psychomotor and rewarding properties of the drug. DA signaling regulates intrastriatal circuits connecting medium spiny neurons (MSNs) with afferent fibers and interneurons. While the cocaine-mediated increase in DA signaling on MSNs is well documented, that on cholinergic interneurons (ChIs) has been more difficult to assess. Using combined pharmacological, chemogenetic, and cell-specific ablation approaches, we reveal that the D2R-dependent inhibition of acetylcholine (ACh) signaling is fundamental to cocaine-induced changes in behavior and the striatal genomic response. We show that the D2R-dependent control of striatal ChIs enables the motor, sensitized, and reinforcing properties of cocaine. This study highlights the importance of the DA- and D2R-mediated inhibitory control of ChIs activity in the normal functioning of striatal networks.
Collapse
|
19
|
Laurent V, Balleine BW. How predictive learning influences choice: Evidence for a GPCR-based memory process necessary for Pavlovian-instrumental transfer. J Neurochem 2021; 157:1436-1449. [PMID: 33662158 DOI: 10.1111/jnc.15339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Predictive learning endows stimuli with the capacity to signal both the sensory-specific and general motivational properties of their associated rewards or outcomes. These two signals can be distinguished behaviorally by their influence on the selection and performance of instrumental actions, respectively. This review focuses on how sensory-specific predictive learning guides choice between actions that earn otherwise equally desirable outcomes. We describe evidence that outcome-specific predictive learning is encoded in the basolateral amygdala and drives the accumulation of delta-opioid receptors on the surface of cholinergic interneurons located in the nucleus accumbens shell. This accumulation constitutes a novel form of cellular memory, not for outcome-specific predictive learning per se but for the selection of, and choice between, future instrumental actions. We describe recent evidence regarding the cascade of events necessary for the formation and expression of this cellular memory and point to open questions for future research into this process. Beyond these mechanistic considerations, the discovery of this new form of memory is consistent with recent evidence suggesting that intracellular rather than synaptic changes can mediate learning-related plasticity to modify brain circuitry to prepare for future significant events.
Collapse
Affiliation(s)
- Vincent Laurent
- Decision Neuroscience Laboratory, School of Psychology, UNSW SYDNEY, Randwick, NSW, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, UNSW SYDNEY, Randwick, NSW, Australia
| |
Collapse
|
20
|
Striatal activity topographically reflects cortical activity. Nature 2021; 591:420-425. [PMID: 33473213 PMCID: PMC7612253 DOI: 10.1038/s41586-020-03166-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
The cortex projects to the dorsal striatum topographically1,2 to regulate behaviour3-5, but spiking activity in the two structures has previously been reported to have markedly different relations to sensorimotor events6-9. Here we show that the relationship between activity in the cortex and striatum is spatiotemporally precise, topographic, causal and invariant to behaviour. We simultaneously recorded activity across large regions of the cortex and across the width of the dorsal striatum in mice that performed a visually guided task. Striatal activity followed a mediolateral gradient in which behavioural correlates progressed from visual cue to response movement to reward licking. The summed activity in each part of the striatum closely and specifically mirrored activity in topographically associated cortical regions, regardless of task engagement. This relationship held for medium spiny neurons and fast-spiking interneurons, whereas the activity of tonically active neurons differed from cortical activity with stereotypical responses to sensory or reward events. Inactivation of the visual cortex abolished striatal responses to visual stimuli, supporting a causal role of cortical inputs in driving the striatum. Striatal visual responses were larger in trained mice than untrained mice, with no corresponding change in overall activity in the visual cortex. Striatal activity therefore reflects a consistent, causal and scalable topographical mapping of cortical activity.
Collapse
|
21
|
Ashkenazi SL, Polis B, David O, Morris G. Striatal cholinergic interneurons exert inhibition on competing default behaviours controlled by the nucleus accumbens and dorsolateral striatum. Eur J Neurosci 2020; 53:2078-2089. [DOI: 10.1111/ejn.14873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Sivan Lian Ashkenazi
- Sagol Department of Neurobiology University of Haifa Haifa Israel
- Department of Neuroscience Rappaport Faculty of Medicine and Research Institute Technion ‐ Israel Institute of Technology Haifa Israel
| | - Baruh Polis
- Sagol Department of Neurobiology University of Haifa Haifa Israel
- The Azrieli Faculty of Medicine Bar‐Ilan University Safed Israel
| | - Orit David
- Sagol Department of Neurobiology University of Haifa Haifa Israel
| | - Genela Morris
- Sagol Department of Neurobiology University of Haifa Haifa Israel
- Department of Neuroscience Rappaport Faculty of Medicine and Research Institute Technion ‐ Israel Institute of Technology Haifa Israel
| |
Collapse
|
22
|
Lau JKL, Ozono H, Kuratomi K, Komiya A, Murayama K. Shared striatal activity in decisions to satisfy curiosity and hunger at the risk of electric shocks. Nat Hum Behav 2020; 4:531-543. [PMID: 32231281 DOI: 10.1038/s41562-020-0848-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Curiosity is often portrayed as a desirable feature of human faculty. However, curiosity may come at a cost that sometimes puts people in harmful situations. Here, using a set of behavioural and neuroimaging experiments with stimuli that strongly trigger curiosity (for example, magic tricks), we examine the psychological and neural mechanisms underlying the motivational effect of curiosity. We consistently demonstrate that across different samples, people are indeed willing to gamble, subjecting themselves to electric shocks to satisfy their curiosity for trivial knowledge that carries no apparent instrumental value. Also, this influence of curiosity shares common neural mechanisms with that of hunger for food. In particular, we show that acceptance (compared to rejection) of curiosity-driven or incentive-driven gambles is accompanied by enhanced activity in the ventral striatum when curiosity or hunger was elicited, which extends into the dorsal striatum when participants made a decision.
Collapse
Affiliation(s)
- Johnny King L Lau
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| | - Hiroki Ozono
- Faculty of Law, Economics and Humanities, Kagoshima University, Kagoshima, Japan
| | - Kei Kuratomi
- Faculty of Psychology, Aichi Shukutoku University, Nagakute, Japan
| | - Asuka Komiya
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kou Murayama
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK. .,Research Institute, Kochi University of Technology, Kochi, Japan.
| |
Collapse
|
23
|
Ahmed NY, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity. Front Mol Neurosci 2019; 12:204. [PMID: 31551706 PMCID: PMC6736589 DOI: 10.3389/fnmol.2019.00204] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic neurons comprise a small population of cells in the striatum but have fundamental roles in fine tuning brain function, and in the etiology of neurological and psychiatric disorders such as Parkinson’s disease (PD) or schizophrenia. The process of developmental cell specification underlying neuronal identity and function is an area of great current interest. There has been significant progress in identifying the developmental origins, commonalities in molecular markers, and physiological properties of the cholinergic neurons. Currently, we are aware of a number of key factors that promote cholinergic fate during development. However, the extent of cholinergic cell diversity is still largely underestimated. New insights into the biological basis of their specification indicate that cholinergic neurons may be far more diverse than previously thought. This review article, highlights the physiological features and the synaptic properties that segregate cholinergic cell subtypes. It provides an accurate picture of cholinergic cell diversity underlying their organization and function in neuronal networks. This review article, also discusses current challenges in deciphering the logic of the cholinergic cell heterogeneity that plays a fundamental role in the control of neural processes in health and disease.
Collapse
Affiliation(s)
- Noorya Yasmin Ahmed
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Rhys Knowles
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nathalie Dehorter
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
24
|
Temporal Coding of Reward Value in Monkey Ventral Striatal Tonically Active Neurons. J Neurosci 2019; 39:7539-7550. [PMID: 31363063 DOI: 10.1523/jneurosci.0869-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The rostromedioventral striatum is critical for behavior dependent on evaluating rewards. We asked what contribution tonically active neurons (TANs), the putative striatal cholinergic interneurons, make in coding reward value in this part of the striatum. Two female monkeys were given the option to accept or reject an offered reward in each trial, the value of which was signaled by a visual cue. Forty-five percent of the TANs use temporally modulated activity to encode information about discounted value. These responses were significantly better represented using principal component analysis than by just counting spikes. The temporal coding is straightforward: the spikes are distributed according to a sinusoidal envelope of activity that changes gain, ranging from positive to negative according to discounted value. Our results show that the information about the relative value of an offered reward is temporally encoded in neural spike trains of TANs. This temporal coding may allow well tuned, coordinated behavior to emerge.SIGNIFICANCE STATEMENT Ever since the discovery that neurons use trains of pulses to transmit information, it seemed self-evident that information would be encoded into the pattern of the spikes. However, there is not much evidence that spike patterns encode cognitive information. We find that a set of interneurons, the tonically active neurons (TANs) in monkeys' striatum, use temporal patterns of response to encode information about the discounted value of offered rewards. The code seems straightforward: a sinusoidal envelope that changes gain according to the discounted value of the offer, describes the rate of spiking across time. This temporal modulation may provide a means to synchronize these interneurons and the activity of other neural elements including principal output neurons.
Collapse
|
25
|
Howe M, Ridouh I, Allegra Mascaro AL, Larios A, Azcorra M, Dombeck DA. Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement. eLife 2019; 8:e44903. [PMID: 30920369 PMCID: PMC6457892 DOI: 10.7554/elife.44903] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
Interplay between dopaminergic and cholinergic neuromodulation in the striatum is crucial for movement control, with prominent models proposing pro-kinetic and anti-kinetic effects of dopamine and acetylcholine release, respectively. However, the natural, movement-related signals of striatum cholinergic neurons and their relationship to simultaneous variations in dopamine signaling are unknown. Here, functional optical recordings in mice were used to establish rapid cholinergic signals in dorsal striatum during spontaneous movements. Bursts across the cholinergic population occurred at transitions between movement states and were marked by widespread network synchronization which diminished during sustained locomotion. Simultaneous cholinergic and dopaminergic recordings revealed distinct but coordinated sub-second signals, suggesting a new model where cholinergic population synchrony signals rapid changes in movement states while dopamine signals the drive to enact or sustain those states.
Collapse
Affiliation(s)
- Mark Howe
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | - Imane Ridouh
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | | | - Alyssa Larios
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | - Maite Azcorra
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| | - Daniel A Dombeck
- Department of NeurobiologyNorthwestern UniversityEvanstonUnited States
| |
Collapse
|
26
|
Dorsal striatal dopamine D1 receptor availability predicts an instrumental bias in action learning. Proc Natl Acad Sci U S A 2018; 116:261-270. [PMID: 30563856 PMCID: PMC6320523 DOI: 10.1073/pnas.1816704116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The brain’s dopaminergic pathways are crucially important for adaptive behavior. They are thought to enable us to approach rewards and stay away from punishments. During learning, dopaminergic reward prediction errors are thought to reinforce previously rewarded actions, so they become easier to repeat. This dopaminergic activity could lead to a systematic bias by which rewarded actions are more readily learned than rewarded inactions. We present two findings. First, dopamine receptors in cortex, dorsal striatum, and nucleus accumbens provide distinct sources of variance in the human brain. Second, the boost in an individual’s learning rate from previously rewarded actions is dependent on the dopamine receptor density in dorsal striatum, a central structure in the dopaminergic circuit. Learning to act to obtain reward and inhibit to avoid punishment is easier compared with learning the opposite contingencies. This coupling of action and valence is often thought of as a Pavlovian bias, although recent research has shown it may also emerge through instrumental mechanisms. We measured this learning bias with a rewarded go/no-go task in 60 adults of different ages. Using computational modeling, we characterized the bias as being instrumental. To assess the role of endogenous dopamine (DA) in the expression of this bias, we quantified DA D1 receptor availability using positron emission tomography (PET) with the radioligand [11C]SCH23390. Using principal-component analysis on the binding potentials in a number of cortical and striatal regions of interest, we demonstrated that cortical, dorsal striatal, and ventral striatal areas provide independent sources of variance in DA D1 receptor availability. Interindividual variation in the dorsal striatal component was related to the strength of the instrumental bias during learning. These data suggest at least three anatomical sources of variance in DA D1 receptor availability separable using PET in humans, and we provide evidence that human dorsal striatal DA D1 receptors are involved in the modulation of instrumental learning biases.
Collapse
|
27
|
Nakajima A, Shimo Y, Uka T, Hattori N. Subthalamic nucleus and globus pallidus interna influence firing of tonically active neurons in the primate striatum through different mechanisms. Eur J Neurosci 2017; 46:2662-2673. [PMID: 28949036 PMCID: PMC5765455 DOI: 10.1111/ejn.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/30/2022]
Abstract
Both the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi) are major targets for neuromodulation therapy for movement disorders. An example of such a therapy is deep brain stimulation (DBS). The striatum is the primary target for pharmacological treatment of these disorders. To further our understanding of both the functional relationships among motor nuclei and the mechanisms of therapies for movement disorders, it is important to clarify how changing the neuronal activity of one target, either by medication or by artificial electrical stimulation, affects the other connected nuclei. To investigate this point, we recorded single-unit activity from tonically active neurons (TANs), which are putative cholinergic interneurons in the striatum, of healthy monkeys (Macaca fuscata) during electrical stimulation of the STN or GPi. Both STN stimulation and GPi stimulation reduced the TAN spike rate. Local infusion of a D2 receptor antagonist in the striatum blocked the reduction in spike rate induced by STN stimulation but not that induced by GPi stimulation. Further, STN stimulation induced phasic dopamine release in the striatum as revealed by in vivo fast-scan cyclic voltammetry. These results suggest the presence of multiple, strong functional relationships among the STN, GPi, and striatum that have different pathways and imply distinct therapeutic mechanisms for STN- and GPi-DBS.
Collapse
Affiliation(s)
- Asuka Nakajima
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan.,Department of Research and Therapeutics for Movement Disorders, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takanori Uka
- Department of Physiology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|