1
|
Moraresku S, Hammer J, Dimakopoulos V, Kajsova M, Janca R, Jezdik P, Kalina A, Marusic P, Vlcek K. Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG. Neurosci Bull 2025:10.1007/s12264-025-01371-x. [PMID: 40095210 DOI: 10.1007/s12264-025-01371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/08/2025] [Indexed: 03/19/2025] Open
Abstract
The dorsal and ventral visual streams have been considered to play distinct roles in visual processing for action: the dorsal stream is assumed to support real-time actions, while the ventral stream facilitates memory-guided actions. However, recent evidence suggests a more integrated function of these streams. We investigated the neural dynamics and functional connectivity between them during memory-guided actions using intracranial EEG. We tracked neural activity in the inferior parietal lobule in the dorsal stream, and the ventral temporal cortex in the ventral stream as well as the hippocampus during a delayed action task involving object identity and location memory. We found increased alpha power in both streams during the delay, indicating their role in maintaining spatial visual information. In addition, we recorded increased alpha power in the hippocampus during the delay, but only when both object identity and location needed to be remembered. We also recorded an increase in theta band phase synchronization between the inferior parietal lobule and ventral temporal cortex and between the inferior parietal lobule and hippocampus during the encoding and delay. Granger causality analysis indicated dynamic and frequency-specific directional interactions among the inferior parietal lobule, ventral temporal cortex, and hippocampus that varied across task phases. Our study provides unique electrophysiological evidence for close interactions between dorsal and ventral streams, supporting an integrated processing model in which both streams contribute to memory-guided actions.
Collapse
Affiliation(s)
- Sofiia Moraresku
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
- Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Vasileios Dimakopoulos
- Klinik für Neurochirurgie, Universitätsspital Zürich, Universität Zürich, Zurich, Switzerland
| | - Michaela Kajsova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia
| | - Kamil Vlcek
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Member of the Epilepsy Research Centre Prague - EpiReC consortium, Prague, Czechia.
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Member of the Epilepsy Research Centre Prague - EpiReC Consortium, Prague, Czechia.
| |
Collapse
|
2
|
Fide E, Bora E, Yener G. Network Segregation and Integration Changes in Healthy Aging: Evidence From EEG Subbands During the Visual Short-Term Memory Binding Task. Eur J Neurosci 2025; 61:e70001. [PMID: 39906991 PMCID: PMC11795350 DOI: 10.1111/ejn.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/08/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Working memory, which tends to be the most vulnerable cognitive domain to aging, is thought to depend on a functional brain network for efficient communication. The dynamic communication within this network is represented by segregation and integration. This study aimed to investigate healthy aging by examining age effect on outcomes of graph theory analysis during the visual short-term memory binding (VSTMB) task. VSTMB tasks rely on the integration of visual features and are less sensitive to semantic and verbal strategies. Effects of age on neuropsychological test scores, along with the EEG graph-theoretical integration, segregation and global organization metrics in frequencies from delta to gamma band were investigated. Neuropsychological assessment showed low sensitivity as a measure of age-related changes. EEG results indicated that network architecture changed more effectively during middle age, while this effectiveness appears to vanish or show compensatory mechanisms in the elderly. These differences were further found to be related to cognitive domain scores. This study is the first to demonstrate differences in working memory network architecture across a broad age range.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Psychology, Faculty of HealthYork UniversityTorontoOntarioCanada
| | - Emre Bora
- Department of Neurosciences, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
- Faculty of Medicine, Department of PsychiatryDokuz Eylül UniversityIzmirTurkey
| | - Görsev Yener
- Department of Neurosciences, Institute of Health SciencesDokuz Eylül UniversityIzmirTurkey
- Faculty of Medicine, Department of NeurologyDokuz Eylül UniversityIzmirTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
3
|
Li J, Cao D, Li W, Sarnthein J, Jiang T. Re-evaluating human MTL in working memory: insights from intracranial recordings. Trends Cogn Sci 2024; 28:1132-1144. [PMID: 39174398 DOI: 10.1016/j.tics.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The study of human working memory (WM) holds significant importance in neuroscience; yet, exploring the role of the medial temporal lobe (MTL) in WM has been limited by the technological constraints of noninvasive methods. Recent advancements in human intracranial neural recordings have indicated the involvement of the MTL in WM processes. These recordings show that different regions of the MTL are involved in distinct aspects of WM processing and also dynamically interact with each other and the broader brain network. These findings support incorporating the MTL into models of the neural basis of WM. This integration can better reflect the complex neural mechanisms underlying WM and enhance our understanding of WM's flexibility, adaptability, and precision.
Collapse
Affiliation(s)
- Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Dan Cao
- School of Psychology, Capital Normal University, Beijing, 100048, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlu Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Zurich Neuroscience Center, ETH Zurich, 8057 Zurich, Switzerland
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
4
|
Cross ZR, Gray SM, Dede AJO, Rivera YM, Yin Q, Vahidi P, Rau EMB, Cyr C, Holubecki AM, Asano E, Lin JJ, McManus OK, Sattar S, Saez I, Girgis F, King-Stephens D, Weber PB, Laxer KD, Schuele SU, Rosenow JM, Wu JY, Lam SK, Raskin JS, Chang EF, Shaikhouni A, Brunner P, Roland JL, Braga RM, Knight RT, Ofen N, Johnson EL. The development of aperiodic neural activity in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622714. [PMID: 39574667 PMCID: PMC11581045 DOI: 10.1101/2024.11.08.622714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The neurophysiological mechanisms supporting brain maturation are fundamental to attention and memory capacity across the lifespan. Human brain regions develop at different rates, with many regions developing into the third and fourth decades of life. Here, in this preregistered study (https://osf.io/gsru7), we analyzed intracranial EEG (iEEG) recordings from widespread brain regions in a large developmental cohort. Using task-based (i.e., attention to-be-remembered visual stimuli) and task-free (resting-state) data from 101 children and adults (5.93 - 54.00 years, 63 males; n electrodes = 5691), we mapped aperiodic (1/ƒ-like) activity, a proxy of excitation:inhibition (E:I) balance with steeper slopes indexing inhibition and flatter slopes indexing excitation. We reveal that aperiodic slopes flatten with age into young adulthood in both association and sensorimotor cortices, challenging models of early sensorimotor development based on brain structure. In prefrontal cortex (PFC), attentional state modulated age effects, revealing steeper task-based than task-free slopes in adults and the opposite in children, consistent with the development of cognitive control. Age-related differences in task-based slopes also explained age-related gains in memory performance, linking the development of PFC cognitive control to the development of memory. Last, with additional structural imaging measures, we reveal that age-related differences in gray matter volume are differentially associated with aperiodic slopes in association and sensorimotor cortices. Our findings establish developmental trajectories of aperiodic activity in localized brain regions and illuminate the development of PFC inhibitory control during adolescence in the development of attention and memory.
Collapse
Affiliation(s)
| | | | | | | | - Qin Yin
- Wayne State University
- University of Texas, Dallas
| | | | | | | | | | | | | | | | - Shifteh Sattar
- University of California, San Diego, and Rady Children’s Hospital
| | - Ignacio Saez
- University of California, Davis
- University of Calgary
| | - Fady Girgis
- University of California, Davis
- University of Calgary
| | | | | | | | | | | | - Joyce Y. Wu
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Sandi K. Lam
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Jeffrey S. Raskin
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | | | | | | | - Jarod L. Roland
- Washington University in St. Louis
- Department of Neurosurgery, Washington University in St Louis
| | | | | | - Noa Ofen
- Wayne State University
- University of Texas, Dallas
| | | |
Collapse
|
5
|
Li H, Feng J, Shi X, Zhao X. Neural mechanisms of Chinese character recognition, updating, and maintenance in the N-back task. Int J Psychophysiol 2024; 200:112356. [PMID: 38701899 DOI: 10.1016/j.ijpsycho.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Using the N-back task, we investigated how memory load influences the neural activity of the Chinese character cognitive subprocess (recognition, updating, and maintenance) in Mainland Chinese speakers. Twenty-seven participants completed the Chinese character N-back paradigm while having their event-related potentials recorded. The study employed time and frequency domain analyses of EEG data. Results showed that accuracy decreased and response times increased with larger N values. For ERPs, N2pc and P300 amplitudes decreased and SW amplitude increased with larger N values. For time frequency analyses, the desynchronization of alpha oscillations decreased after stimulus onset, but the synchronization of alpha oscillations increased during the maintenance phase. The results suggest that greater memory load is related to a decrease in cognitive resources during updating and an increase in cognitive resources during information maintenance. The results of a behavioral-ERP data structural equation model analysis showed that the ERP indicators in the maintenance phase predicted behavioral performance.
Collapse
Affiliation(s)
- Hongli Li
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Jianru Feng
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoxuan Shi
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Xin Zhao
- School of Psychology, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Behavioral and Mental Health of Gansu province, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
6
|
Millon EM, Haddad AE, Chang HYM, Najafizadeh L, Shors TJ. The Feeling of Time Passing Is Associated with Recurrent Sustained Activity and Theta Rhythms Across the Cortex. Brain Connect 2024; 14:39-47. [PMID: 38019079 DOI: 10.1089/brain.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Introduction: We are constantly estimating how much time has passed, and yet know little about the brain mechanisms through which this process occurs. In this pilot study, we evaluated so-called subjective time estimation with the temporal bisection task, while recording brain activity from electroencephalography (EEG). Methods: Nine adult participants were trained to distinguish between two durations of visual stimuli as either "short" (400 msec) or "long" (1600 msec). They were then presented with stimulus durations in between the long and short stimuli. EEG data from 128 electrodes were examined with a novel analytical method that identifies segments of sustained cortical activity during the task. Results: Participants tended to categorize intermediate durations as "long" more frequently than "short" and were thus experiencing time as moving faster while overestimating the amount of time passing. Their mean bisection point (during which frequency of selecting short vs. long is equal) was closer to the geometric mean of task stimuli (800 msec) rather than the arithmetic mean (1000 msec). In contrast, sustained brain activity occurred closer to the arithmetic mean. The recurrence rate of this activity was highly related to the bisection point, especially when analyzed within naturally occurring theta oscillations (4-8 Hz) (r = -0.90). Discussion: Sustained activity across the cortex within the theta range may reflect temporal durations, whereas its repeated appearance relates to the subjective feeling of time passing.
Collapse
Affiliation(s)
- Emma M Millon
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Current affiliations: Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, Department of Integrative Health, NYU Langone Health, New York, USA
| | - Ali E Haddad
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey, USA
- Department of Computer Engineering, University of Basrah, Basrah, Iraq
| | - Han Yan M Chang
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Tracey J Shors
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Li J, Cao D, Yu S, Wang H, Imbach L, Stieglitz L, Sarnthein J, Jiang T. Theta-Alpha Connectivity in the Hippocampal-Entorhinal Circuit Predicts Working Memory Load. J Neurosci 2024; 44:e0398232023. [PMID: 38050110 PMCID: PMC10860618 DOI: 10.1523/jneurosci.0398-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Working memory (WM) maintenance relies on multiple brain regions and inter-regional communications. The hippocampus and entorhinal cortex (EC) are thought to support this operation. Besides, EC is the main gateway for information between the hippocampus and neocortex. However, the circuit-level mechanism of this interaction during WM maintenance remains unclear in humans. To address these questions, we recorded the intracranial electroencephalography from the hippocampus and EC while patients (N = 13, six females) performed WM tasks. We found that WM maintenance was accompanied by enhanced theta/alpha band (2-12 Hz) phase synchronization between the hippocampus to the EC. The Granger causality and phase slope index analyses consistently showed that WM maintenance was associated with theta/alpha band-coordinated unidirectional influence from the hippocampus to the EC. Besides, this unidirectional inter-regional communication increased with WM load and predicted WM load during memory maintenance. These findings demonstrate that WM maintenance in humans engages the hippocampal-entorhinal circuit, with the hippocampus influencing the EC in a load-dependent manner.
Collapse
Affiliation(s)
- Jin Li
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Shan Yu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
- Zurich Neuroscience Center, ETH and University of Zurich, Zurich 8057, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Johannes Sarnthein
- Zurich Neuroscience Center, ETH and University of Zurich, Zurich 8057, Switzerland
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China
| |
Collapse
|
8
|
Chen C, Liang Y, Xu S, Yi C, Li Y, Chen B, Yang L, Liu Q, Yao D, Li F, Xu P. The dynamic causality brain network reflects whether the working memory is solidified. Cereb Cortex 2024; 34:bhad467. [PMID: 38061696 DOI: 10.1093/cercor/bhad467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Working memory, which is foundational to higher cognitive function, is the "sketchpad of volitional control." Successful working memory is the inevitable outcome of the individual's active control and manipulation of thoughts and turning them into internal goals during which the causal brain processes information in real time. However, little is known about the dynamic causality among distributed brain regions behind thought control that underpins successful working memory. In our present study, given that correct responses and incorrect ones did not differ in either contralateral delay activity or alpha suppression, further rooting on the high-temporal-resolution EEG time-varying directed network analysis, we revealed that successful working memory depended on both much stronger top-down connections from the frontal to the temporal lobe and bottom-up linkages from the occipital to the temporal lobe, during the early maintenance period, as well as top-down flows from the frontal lobe to the central areas as the delay behavior approached. Additionally, the correlation between behavioral performance and casual interactions increased over time, especially as memory-guided delayed behavior approached. Notably, when using the network metrics as features, time-resolved multiple linear regression of overall behavioral accuracy was exactly achieved as delayed behavior approached. These results indicate that accurate memory depends on dynamic switching of causal network connections and shifting to more task-related patterns during which the appropriate intervention may help enhance memory.
Collapse
Affiliation(s)
- Chunli Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Liang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Shiyun Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuqin Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baodan Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Yang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiang Liu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu 610000, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
9
|
Johnson EL, Lin JJ, King-Stephens D, Weber PB, Laxer KD, Saez I, Girgis F, D'Esposito M, Knight RT, Badre D. A rapid theta network mechanism for flexible information encoding. Nat Commun 2023; 14:2872. [PMID: 37208373 DOI: 10.1038/s41467-023-38574-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Flexible behavior requires gating mechanisms that encode only task-relevant information in working memory. Extant literature supports a theoretical division of labor whereby lateral frontoparietal interactions underlie information maintenance and the striatum enacts the gate. Here, we reveal neocortical gating mechanisms in intracranial EEG patients by identifying rapid, within-trial changes in regional and inter-regional activities that predict subsequent behavioral outputs. Results first demonstrate information accumulation mechanisms that extend prior fMRI (i.e., regional high-frequency activity) and EEG evidence (inter-regional theta synchrony) of distributed neocortical networks in working memory. Second, results demonstrate that rapid changes in theta synchrony, reflected in changing patterns of default mode network connectivity, support filtering. Graph theoretical analyses further linked filtering in task-relevant information and filtering out irrelevant information to dorsal and ventral attention networks, respectively. Results establish a rapid neocortical theta network mechanism for flexible information encoding, a role previously attributed to the striatum.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA.
| | - Jack J Lin
- Department of Neurology and Center for Mind and Brain, University of California, Davis, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Ignacio Saez
- Department of Neurological Surgery, University of California, Davis, CA, USA
- Departments of Neuroscience, Neurosurgery, and Neurology, Ichan School of Medicine at Mt. Sinai, New York, NY, USA
| | - Fady Girgis
- Department of Neurological Surgery, University of California, Davis, CA, USA
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, and Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
10
|
Scholly J, Gras A, Guye M, Bilger M, Valenti Hirsch MP, Hirsch E, Timofeev A, Vidailhet P, Bénar CG, Bartolomei F. Connectivity Alterations in Emotional and Cognitive Networks During a Manic State Induced by Direct Electrical Stimulation. Brain Topogr 2022; 35:627-635. [PMID: 36071370 DOI: 10.1007/s10548-022-00913-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Mania is characterized by affective and cognitive alterations, with heightened external and self-awareness that are opposite to the alteration of awareness during epileptic seizures. Electrical stimulations carried out routinely during stereotactic intracerebral EEG (SEEG) recordings for presurgical evaluation of epilepsy may represent a unique opportunity to study the pathophysiology of such complex emotional-behavioral phenomenon, particularly difficult to reproduce in experimental setting. We investigated SEEG signals-based functional connectivity between different brain regions involved in emotions and in consciousness processing during a manic state induced by electrical stimulation in a patient with drug-resistant focal epilepsy. The stimulation inducing manic state and an asymptomatic stimulation of the same site, as well as a seizure with alteration of awareness (AOA) were analyzed. Functional connectivity analysis was performed by measuring interdependencies (nonlinear regression analysis based on the h2 coefficient) between broadband SEEG signals and within typical sub-bands, before and after stimulation, or before and during the seizure with AOA, respectively. Stimulation of the right lateral prefrontal cortex induced a manic state lasting several hours. Its onset was associated with significant increase of broadband-signal functional coupling between the right hemispheric limbic nodes, the temporal pole and the claustrum, whereas significant decorrelation between the right lateral prefrontal and the anterior cingulate cortex was observed in theta-band. In contrast, ictal alteration of awareness was associated with increased broadband and sub-bands synchronization within and between the internal and external awareness networks, including the anterior and middle cingulate, the mesial and lateral prefrontal, the inferior parietal and the temporopolar cortex. Our data suggest the existence of network- and frequency-specific functional connectivity patterns during manic state. A transient desynchronization of theta activity between the external and internal awareness network hubs is likely to increase awareness, with potential therapeutic effect.
Collapse
Affiliation(s)
- Julia Scholly
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France. .,Aix Marseille Univ, CNRS, CRMBM, Marseille, France. .,Service d'Epileptologie et Rythmologie Cérébrale, Hôpital Timone, AP-HM, 264 Rue St Pierre, 13005, Marseille, France.
| | - Adrien Gras
- Consultation-Liaison Psychiatry Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Maxime Guye
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France.,Aix Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Mathias Bilger
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | | | - Edouard Hirsch
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Alexander Timofeev
- Medical and Surgical Epilepsy Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Vidailhet
- Consultation-Liaison Psychiatry Unit, University Hospital of Strasbourg, Strasbourg, France
| | - Christian G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Service d'Epileptologie et de Rythmololgie Cérébrale, Hôpital Timone, AP-HM, Marseille, France.,Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
11
|
Dimakopoulos V, Mégevand P, Stieglitz LH, Imbach L, Sarnthein J. Information flows from hippocampus to auditory cortex during replay of verbal working memory items. eLife 2022; 11:78677. [PMID: 35960169 PMCID: PMC9374435 DOI: 10.7554/elife.78677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and – additionally in four participants – recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance. Every day, the brain’s ability to temporarily store and recall information – called working memory – enables us to reason, solve complex problems or to speak. Holding pieces of information in working memory for short periods of times is a skill that relies on communication between neural circuits that span several areas of the brain. The hippocampus, a seahorse-shaped area at the centre of the brain, is well-known for its role in learning and memory. Less clear, however, is how brain regions that process sensory inputs, including visual stimuli and sounds, contribute to working memory. To investigate, Dimakopoulos et al. studied the flow of information between the hippocampus and the auditory cortex, which processes sound. To do so, various types of electrodes were placed on the scalp or surgically implanted in the brains of people with drug-resistant epilepsy. These electrodes measured the brain activity of participants as they read, heard and then mentally replayed strings of up to 8 letters. The electrical signals analysed reflected the flow of information between brain areas. When participants read and heard the sequence of letters, brain signals flowed from the auditory cortex to the hippocampus. The flow of electrical activity was reversed while participants recalled the letters. This pattern was found only in the left side of the brain, as expected for a language related task, and only if participants recalled the letters correctly. This work by Dimakopoulos et al. provides the first evidence of bidirectional communication between brain areas that are active when people memorise and recall information from their working memory. In doing so, it provides a physiological basis for how the brain encodes and replays information stored in working memory, which evidently relies on the interplay between the hippocampus and sensory cortex.
Collapse
Affiliation(s)
- Vasileios Dimakopoulos
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
| | - Pierre Mégevand
- Département des neurosciences fondamentales, Faculté de médecine, Université de Genève, Genève, Switzerland.,Service de neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland, Genève, Switzerland
| | - Lennart H Stieglitz
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
| | - Lukas Imbach
- Schweizerisches Epilepsie Zentrum, Klinik Lengg AG, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zuric, Zurich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zuric, Zurich, Switzerland
| |
Collapse
|
12
|
Johnson EL, Arciniega H, Jones KT, Kilgore-Gomez A, Berryhill ME. Individual predictors and electrophysiological signatures of working memory enhancement in aging. Neuroimage 2022; 250:118939. [PMID: 35104647 PMCID: PMC8923157 DOI: 10.1016/j.neuroimage.2022.118939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
A primary goal of translational neuroscience is to identify the neural mechanisms of age-related cognitive decline and develop protocols to maximally improve cognition. Here, we demonstrate how interventions that apply noninvasive neurostimulation to older adults improve working memory (WM). We found that one session of sham-controlled transcranial direct current stimulation (tDCS) selectively improved WM in older adults with more education, extending earlier work and underscoring the importance of identifying individual predictors of tDCS responsivity. Improvements in WM were associated with two distinct electrophysiological signatures. First, a broad enhancement of theta network synchrony tracked improvements in behavioral accuracy, with tDCS effects moderated by education level. Further analysis revealed that accuracy dynamics reflected an anterior-posterior network distribution regardless of cathode placement. Second, specific enhancements of theta-gamma phase-amplitude coupling (PAC) reflecting tDCS current flow tracked improvements in reaction time (RT). RT dynamics further explained inter-individual variability in WM improvement independent of education. These findings illuminate theta network synchrony and theta-gamma PAC as distinct but complementary mechanisms supporting WM in aging. Both mechanisms are amenable to intervention, the effectiveness of which can be predicted by individual demographic factors.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, 60611, United States.
| | - Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, United States
| | - Kevin T Jones
- Department of Neurology, Neuroscape, University of California-San Francisco, San Francisco, CA, 94158, United States
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, University of Nevada, Reno, 89557, United States
| | - Marian E Berryhill
- Department of Psychology, Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, University of Nevada, Reno, 89557, United States.
| |
Collapse
|
13
|
Lee B, Kim JS, Chung CK. Parietal and Medial Temporal Lobe Interactions in Working Memory Goal-Directed Behavior. Cortex 2022; 150:126-136. [DOI: 10.1016/j.cortex.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
|
14
|
Johnson EL, Yin Q, O'Hara NB, Tang L, Jeong JW, Asano E, Ofen N. Dissociable oscillatory theta signatures of memory formation in the developing brain. Curr Biol 2022; 32:1457-1469.e4. [PMID: 35172128 PMCID: PMC9007830 DOI: 10.1016/j.cub.2022.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Understanding complex human brain functions is critically informed by studying such functions during development. Here, we addressed a major gap in models of human memory by leveraging rare direct electrophysiological recordings from children and adolescents. Specifically, memory relies on interactions between the medial temporal lobe (MTL) and prefrontal cortex (PFC), and the maturation of these interactions is posited to play a key role in supporting memory development. To understand the nature of MTL-PFC interactions, we examined subdural recordings from MTL and PFC in 21 neurosurgical patients aged 5.9-20.5 years as they performed an established scene memory task. We determined signatures of memory formation by comparing the study of subsequently recognized to forgotten scenes in single trials. Results establish that MTL and PFC interact via two distinct theta mechanisms, an ∼3-Hz oscillation that supports amplitude coupling and slows down with age and an ∼7-Hz oscillation that supports phase coupling and speeds up with age. Slow and fast theta interactions immediately preceding scene onset further explained age-related differences in recognition performance. Last, with additional diffusion imaging data, we linked both functional mechanisms to the structural maturation of the cingulum tract. Our findings establish system-level dynamics of memory formation and suggest that MTL and PFC interact via increasingly dissociable mechanisms as memory improves across development.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL 60611, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Qin Yin
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Nolan B O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Jeong-Won Jeong
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
15
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
16
|
Zang F, Zhu Y, Zhang Q, Tan C, Wang Q, Xie C, Alzheimer’s Disease Neuroimaging Initiative*. APOE genotype moderates the relationship between LRP1 polymorphism and cognition across the Alzheimer's disease spectrum via disturbing default mode network. CNS Neurosci Ther 2021; 27:1385-1395. [PMID: 34387022 PMCID: PMC8504518 DOI: 10.1111/cns.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS This study aims to investigate the mechanisms by which apolipoprotein E (APOE) genotype modulates the relationship between low-density lipoprotein receptor-related protein 1 (LRP1) rs1799986 variant on the default mode network (DMN) and cognition in Alzheimer's disease (AD) spectrum populations. METHODS Cross-sectional 168 subjects of AD spectrum were obtained from Alzheimer's Disease Neuroimaging Initiative database with resting-state fMRI scans and neuropsychological scores data. Multivariable linear regression analysis was adopted to investigate the main effects and interaction of LRP1 and disease on the DMN. Moderation and interactive analyses were performed to assess the relationships among APOE, LRP1, and cognition. A support vector machine model was used to classify AD spectrum with altered connectivity as an objective diagnostic biomarker. RESULTS The main effects and interaction of LRP1 and disease were mainly focused on the core hubs of frontal-parietal network. Several brain regions with altered connectivity were correlated with cognitive scores in LRP1-T carriers, but not in non-carriers. APOE regulated the effect of LRP1 on cognitive performance. The functional connectivity of numerous brain regions within LRP1-T carriers yielded strong power for classifying AD spectrum. CONCLUSION These findings suggested LRP1 could affect DMN and provided a stage-dependent neuroimaging biomarker for classifying AD spectrum populations.
Collapse
Affiliation(s)
- Feifei Zang
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Yao Zhu
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Qianqian Zhang
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Chang Tan
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Qing Wang
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Chunming Xie
- Department of NeurologyAffiliated ZhongDa HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Neuropsychiatric InstituteAffiliated ZhongDa HospitalSoutheast UniversityNanjingChina
| | | |
Collapse
|
17
|
Leuchter AF, Wilson AC, Vince-Cruz N, Corlier J. Novel method for identification of individualized resonant frequencies for treatment of Major Depressive Disorder (MDD) using repetitive Transcranial Magnetic Stimulation (rTMS): A proof-of-concept study. Brain Stimul 2021; 14:1373-1383. [PMID: 34425244 DOI: 10.1016/j.brs.2021.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD), but therapeutic benefit is highly variable. Clinical improvement is related to changes in brain circuits, which have preferred resonant frequencies (RFs) and vary across individuals. OBJECTIVE We developed a novel rTMS-electroencephalography (rTMS-EEG) interrogation paradigm to identify RFs using the association of power/connectivity measures with symptom severity and treatment outcome. METHODS 35 subjects underwent rTMS interrogation at 71 frequencies ranging from 3 to 17 Hz administered to left dorsolateral prefrontal cortex (DLPFC). rTMS-EEG was used to assess resonance in oscillatory power/connectivity changes (phase coherence [PC], envelope correlation [EC], and spectral correlation coefficient [SCC]) after each frequency. Multiple regression was used to detect relationships between 10 Hz resonance and baseline symptoms as well as clinical improvement after 10 sessions of 10 Hz rTMS treatment. RESULTS Baseline symptom severity was significantly associated with SCC resonance in left sensorimotor (SM; p < 0.0004), PC resonance in fronto-parietal (p = 0.001), and EC resonance in centro-posterior channels (p = 0.002). Subjects significantly improved with 10 sessions of rTMS treatment. Only decreased SCC SM resonance was significantly associated with clinical improvement (r = 0.35, p = 0.04). Subjects for whom 10 Hz SM SCC was highly ranked as an RF among all stimulation frequencies had better outcomes from 10 Hz treatment. CONCLUSIONS Resonance of 10 Hz stimulation measured using SCC correlated with both symptom severity and improvement with 10 Hz rTMS treatment. Research should determine whether this interrogation paradigm can identify individualized rTMS treatment frequencies.
Collapse
Affiliation(s)
- Andrew F Leuchter
- From the TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, And the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Andrew C Wilson
- From the TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, And the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nikita Vince-Cruz
- From the TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, And the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Juliana Corlier
- From the TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, And the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
18
|
Davoudi S, Parto Dezfouli M, Knight RT, Daliri MR, Johnson EL. Prefrontal Lesions Disrupt Posterior Alpha-Gamma Coordination of Visual Working Memory Representations. J Cogn Neurosci 2021; 33:1798-1810. [PMID: 34375418 PMCID: PMC8428813 DOI: 10.1162/jocn_a_01715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How does the human brain prioritize different visual representations in working memory (WM)? Here, we define the oscillatory mechanisms supporting selection of "where" and "when" features from visual WM storage and investigate the role of pFC in feature selection. Fourteen individuals with lateral pFC damage and 20 healthy controls performed a visuospatial WM task while EEG was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation. A retro-cue presented mid-delay prompted which of the two shapes had been in either the top/bottom spatial position or first/second temporal position. We found that cross-frequency coupling between parieto-occipital alpha (α; 8-12 Hz) oscillations and topographically distributed gamma (γ; 30-50 Hz) activity tracked selection of the distinct cued feature in controls. This signature of feature selection was disrupted in patients with pFC lesions, despite intact α-γ coupling independent of feature selection. These findings reveal a pFC-dependent parieto-occipital α-γ mechanism for the rapid selection of visual WM representations.
Collapse
Affiliation(s)
- Saeideh Davoudi
- University of Montréal, Quebec, Canada
- CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohsen Parto Dezfouli
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | |
Collapse
|
19
|
Parto Dezfouli M, Davoudi S, Knight RT, Daliri MR, Johnson EL. Prefrontal lesions disrupt oscillatory signatures of spatiotemporal integration in working memory. Cortex 2021; 138:113-126. [PMID: 33684625 PMCID: PMC8058286 DOI: 10.1016/j.cortex.2021.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
How does the human brain integrate spatial and temporal information into unified mnemonic representations? Building on classic theories of feature binding, we first define the oscillatory signatures of integrating 'where' and 'when' information in working memory (WM) and then investigate the role of prefrontal cortex (PFC) in spatiotemporal integration. Fourteen individuals with lateral PFC damage and 20 healthy controls completed a visuospatial WM task while electroencephalography (EEG) was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation. We defined EEG signatures of spatiotemporal integration by comparing the maintenance of two possible where-when configurations: the first shape presented on top and the reverse. Frontal delta-theta (δθ; 2-7 Hz) activity, frontal-posterior δθ functional connectivity, lateral posterior event-related potentials, and mesial posterior alpha phase-to-gamma amplitude coupling dissociated the two configurations in controls. WM performance and frontal and mesial posterior signatures of spatiotemporal integration were diminished in PFC lesion patients, whereas lateral posterior signatures were intact. These findings reveal both PFC-dependent and independent substrates of spatiotemporal integration and link optimal performance to PFC.
Collapse
Affiliation(s)
- Mohsen Parto Dezfouli
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Saeideh Davoudi
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Mohammad Reza Daliri
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
20
|
Gao R, van den Brink RL, Pfeffer T, Voytek B. Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. eLife 2020; 9:e61277. [PMID: 33226336 PMCID: PMC7755395 DOI: 10.7554/elife.61277] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex and are relevant for cognition in both short and long terms, bridging microcircuit physiology with macroscale dynamics and behavior.
Collapse
Affiliation(s)
- Richard Gao
- Department of Cognitive Science, University of California, San DiegoLa JollaUnited States
| | - Ruud L van den Brink
- Section Computational Cognitive Neuroscience, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Thomas Pfeffer
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu FabraBarcelonaSpain
| | - Bradley Voytek
- Department of Cognitive Science, University of California, San DiegoLa JollaUnited States
- Halıcıoğlu Data Science Institute, University of California, San DiegoLa JollaUnited States
- Neurosciences Graduate Program, University of California, San DiegoLa JollaUnited States
- Kavli Institute for Brain and Mind, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
21
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
22
|
Nir-Cohen G, Kessler Y, Egner T. Neural Substrates of Working Memory Updating. J Cogn Neurosci 2020; 32:2285-2302. [PMID: 32897122 DOI: 10.1162/jocn_a_01625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Working memory (WM) needs to protect current content from interference and simultaneously be amenable to rapid updating with newly relevant information. An influential model suggests these opposing requirements are met via a BG-thalamus gating mechanism that allows for selective updating of PFC WM representations. A large neuroimaging literature supports the general involvement of PFC, BG, and thalamus, as well as posterior parietal cortex, in WM. However, the specific functional contributions of these regions to key subprocesses of WM updating, namely, gate opening, content substitution, and gate closing, are still unknown, as common WM tasks conflate these processes. We therefore combined fMRI with the reference-back task, specifically designed to tease apart these subprocesses. Participants compared externally presented face stimuli to a reference face held in WM, while alternating between updating and maintaining this reference, resulting in opening versus closing the gate to WM. Gate opening and substitution processes were associated with strong BG, thalamic, and frontoparietal activation, but intriguingly, the same activity profile was observed for sensory cortex supporting task stimulus processing (i.e., the fusiform face area). In contrast, gate closing was not reliably associated with any of these regions. These findings provide new support for the involvement of the BG in gate opening, as suggested by the gating model, but qualify the model's assumptions by demonstrating that gate closing does not seem to depend on the BG and that gate opening also involves task-relevant sensory cortex.
Collapse
|
23
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Single-Trial Decoding from Local Field Potential Using Bag of Word Representation. Brain Topogr 2019; 33:10-21. [PMID: 31363879 DOI: 10.1007/s10548-019-00726-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
Neural decoding allows us to study the brain functions by investigating the relationship between a stimulus and the corresponding response. Recently, the local field potential (LFP) has been targeted as a hallmark of brain activity for neural decoding. Despite several decoding methods, there is still a lack of a comprehensive framework to decode cognitive functions in an integrated structure. Here, we addressed this issue by developing a dictionary-based method to represent the LFP signals via a bag-of-words (BOW) approach. First, we defined a general dictionary consisting of various Gabor wavelets as the words which enabled us to represent LFPs in word domain. For each trial, the LFP signal was convolved with the dictionary words. The integral of the absolute value and the mean phase of the complex output were considered as histogram weights. In the next step, using cross-validation leave-one-out method, the trials were split into the training and test sets. The weights of each individual word were swapped across trials within a certain category of the training set while the sequential order was maintained. Finally, the test trial was classified using label voting in the k-nearest training trials. We conducted the proposed method on two independent LFP data sets, recorded from the rat primary auditory cortex (A1) and monkey middle temporal area in order to evaluate its efficiency. In addition to the chance level, the proposed method was compared with a standard BOW approach that has been extended recently for biomedical signals classification. Results show a high efficiency (~ 15% improvement in decoding accuracy) of the proposed method. Together, the aforementioned method provides a comprehensive framework for single-trial decoding from short-length electrophysiological signals.
Collapse
|
25
|
Parto Dezfouli M, Zarei M, Jahed M, Daliri MR. Stimulus-Specific Adaptation Decreases the Coupling of Spikes to LFP Phase. Front Neural Circuits 2019; 13:44. [PMID: 31333419 PMCID: PMC6616079 DOI: 10.3389/fncir.2019.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022] Open
Abstract
Stimulus repetition suppresses the neural activity in different sensory areas of the brain. This mechanism of so-called stimulus-specific adaptation (SSA) has been observed in both spiking activity and local field potential (LFP) responses. However, much remains to be known about the effect of SSA on the spike–LFP relation. In this study, we approached this issue by investigating the spike-phase coupling (SPC) in control and adapting paradigms. For the control paradigm, pure tones were presented in a random unbiased sequence. In the adapting paradigm, the same stimuli were presented in a random pattern but it was biased to an adapter stimulus. In fact, the adapter occupied 80% of the adapting sequence. During the tasks, LFP and multi-unit activity were recorded simultaneously from the primary auditory cortex of 15 anesthetized rats. To clarify the effect of adaptation on the relation between spike and LFP responses, the SPC of the adapter stimulus in these two paradigms was evaluated. Here, we employed phase locking value method for calculating the SPC. Our data show a strong coupling of spikes to LFP phase most prominently in beta band. This coupling was observed to decrease in the adapting condition compared to the control one. Importantly, we found that adaptation reduces spikes dominantly from the preferred phase of LFP in which spikes are more likely to be present there. As a result, the preferred phase of LFP may play a key role in coordinating neuronal spiking activity in neural adaptation mechanism. This finding is important for interpretation of the underlying neural mechanism of adaptation and also can be used in the context of the network and related connectivity models.
Collapse
Affiliation(s)
- Mohsen Parto Dezfouli
- Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Zarei
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehran Jahed
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|