1
|
Cilleros-Portet A, Lesseur C, Marí S, Cosin-Tomas M, Lozano M, Irizar A, Burt A, García-Santisteban I, Garrido-Martín D, Escaramís G, Hernangomez-Laderas A, Soler-Blasco R, Breeze CE, Gonzalez-Garcia BP, Santa-Marina L, Chen J, Llop S, Fernández MF, Vrijheid M, Ibarluzea J, Guxens M, Marsit C, Bustamante M, Bilbao JR, Fernandez-Jimenez N. Potentially causal associations between placental DNA methylation and schizophrenia and other neuropsychiatric disorders. Nat Commun 2025; 16:2431. [PMID: 40087310 PMCID: PMC11909199 DOI: 10.1038/s41467-025-57760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Increasing evidence supports the role of the placenta in neurodevelopment and in the onset of neuropsychiatric disorders. Recently, mQTL and iQTL maps have proven useful in understanding relationships between SNPs and GWAS that are not captured by eQTL. In this context, we propose that part of the genetic predisposition to complex neuropsychiatric disorders acts through placental DNA methylation. We construct a public placental cis-mQTL database including 214,830 CpG sites calculated in 368 fetal placenta DNA samples from the INMA project, and run cell type-, gestational age- and sex-imQTL models. We combine these data with summary statistics of GWAS on ten neuropsychiatric disorders using summary-based Mendelian randomization and colocalization. We also evaluate the influence of identified DNA methylation sites on placental gene expression in the RICHS cohort. We find that placental cis-mQTLs are enriched in placenta-specific active chromatin regions, and establish that part of the genetic burden for schizophrenia, bipolar disorder, and major depressive disorder confers risk through placental DNA methylation. The potential causality of several of the observed associations is reinforced by secondary association signals identified in conditional analyses, the involvement of cell type-imQTLs, and the correlation of identified DNA methylation sites with the expression levels of relevant genes in the placenta.
Collapse
Affiliation(s)
- Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergi Marí
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
- Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Geòrgia Escaramís
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Alba Hernangomez-Laderas
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raquel Soler-Blasco
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Department of Nursing, Universitat de València, Valencia, Spain
| | | | - Bárbara P Gonzalez-Garcia
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Biogipuzkoa Health Research Institute, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, San Sebastian, Spain
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mariana F Fernández
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Radiology and Physical Medicine, Biomedical Research Center (CIBM), School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Biogipuzkoa Health Research Institute, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, San Sebastian, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- ICREA, Barcelona, Spain
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biobizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
2
|
Chen X, Zhou YN, Lu XZ, Li RJ, Xiong YF, Sheng X, Zhu WW. Cognitive dysfunction in schizophrenia patients caused by down-regulation of γ-aminobutyric acid receptor subunits. World J Psychiatry 2024; 14:784-793. [PMID: 38984326 PMCID: PMC11230097 DOI: 10.5498/wjp.v14.i6.784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The expression pattern of gamma aminobutyric acid (GABA) receptor subunits are commonly altered in patients with schizophrenia, which may lead to nerve excitation/inhibition problems, affecting cognition, emotion, and behavior. AIM To explore GABA receptor expression and its relationship with schizophrenia and to provide insights into more effective treatments. METHODS This case-control study enrolled 126 patients with schizophrenia treated at our hospital and 126 healthy volunteers who underwent physical examinations at our hospital during the same period. The expression levels of the GABA receptor subunits were detected using 1H-magnetic resonance spectroscopy. The recognized cognitive battery tool, the MATRICS Consensus Cognitive Battery, was used to evaluate the scores for various dimensions of cognitive function. The correlation between GABA receptor subunit downregulation and schizophrenia was also analyzed. RESULTS Significant differences in GABA receptor subunit levels were found between the case and control groups (P < 0.05). A significant difference was also found between the case and control groups in terms of cognitive function measures, including attention/alertness and learning ability (P < 0.05). Specifically, as the expression levels of GABRA1 (α1 subunit gene), GABRB2 (β2 subunit gene), GABRD (δ subunit), and GABRE (ε subunit) decreased, the severity of the patients' condition increased gradually, indicating a positive correlation between the downregulation of these 4 receptor subunits and schizophrenia (P < 0.05). However, the expression levels of GABRA5 (α5 subunit gene) and GABRA6 (α6 subunit gene) showed no significant correlation with schizophrenia (P > 0.05). CONCLUSION Downregulation of the GABA receptor subunits is positively correlated with schizophrenia. In other words, when GABA receptor subunits are downregulated in patients, cognitive impairment becomes more severe.
Collapse
Affiliation(s)
- Xi Chen
- Department of Child and Adolescent Psychiatric, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Ya-Nan Zhou
- Department of Child and Adolescent Psychiatric, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Xiao-Zi Lu
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao 266034, Shandong Province, China
| | - Ren-Jiao Li
- Department of Child and Adolescent Psychiatric, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Yi-Fan Xiong
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Xia Sheng
- Department of Child and Adolescent Psychiatric, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Wei-Wei Zhu
- Department of Sleep Disorders and Neurosis, Brain Hospital of Hunan Province, The Second People’s Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| |
Collapse
|
3
|
Portnova G, Khayrullina G, Martynova O. Temporal dynamics of autonomic nervous system responses under cognitive-emotional workload in obsessive-compulsive disorder. Psychophysiology 2024; 61:e14549. [PMID: 38409649 DOI: 10.1111/psyp.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
Dysregulation of the autonomic nervous system (ANS) is commonly observed in various mental disorders, particularly when individuals engage in prolonged cognitive-emotional tasks that require ANS adjustment to workload. Although the understanding of the temporal dynamics of sympathetic and parasympathetic tones in obsessive-compulsive disorder (OCD) is limited, analyzing ANS reactions to cognitive-emotional workload could provide valuable insights into one of the underlying causes of OCD. This study investigated the temporal dynamics of heart rate (HR) and pupil area (PA) while participants with OCD and healthy volunteers solved antisaccade tasks, with affective pictures serving as central fixation stimuli. The data of 31 individuals with OCD and 30 healthy volunteers were included in the study, comprising three separate blocks, each lasting approximately 8 min. The results revealed an increase in sympathetic tone in the OCD group, with the most noticeable rise occurring during the middle part of each block, particularly during the presentation of negative stimuli. Healthy volunteers demonstrated adaptive temporal dynamics of HR and PA from the first block to the last block of tasks, whereas individuals with OCD exhibited fewer changes over time, suggesting a reduced adaptation of the ANS sympathetic tone to cognitive-emotional workload in OCD.
Collapse
Affiliation(s)
- Galina Portnova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - Guzal Khayrullina
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
4
|
Chung IH, Huang YS, Fang TH, Chen CH. Whole Genome Sequencing Revealed Inherited Rare Oligogenic Variants Contributing to Schizophrenia and Major Depressive Disorder in Two Families. Int J Mol Sci 2023; 24:11777. [PMID: 37511534 PMCID: PMC10380944 DOI: 10.3390/ijms241411777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Schizophrenia and affective disorder are two major complex mental disorders with high heritability. Evidence shows that rare variants with significant clinical impacts contribute to the genetic liability of these two disorders. Also, rare variants associated with schizophrenia and affective disorders are highly personalized; each patient may carry different variants. We used whole genome sequencing analysis to study the genetic basis of two families with schizophrenia and major depressive disorder. We did not detect de novo, autosomal dominant, or recessive pathogenic or likely pathogenic variants associated with psychiatric disorders in these two families. Nevertheless, we identified multiple rare inherited variants with unknown significance in the probands. In family 1, with singleton schizophrenia, we detected four rare variants in genes implicated in schizophrenia, including p.Arg1627Trp of LAMA2, p.Pro1338Ser of CSMD1, p.Arg691Gly of TLR4, and Arg182X of AGTR2. The p.Arg691Gly of TLR4 was inherited from the father, while the other three were inherited from the mother. In family 2, with two affected sisters diagnosed with major depressive disorder, we detected three rare variants shared by the two sisters in three genes implicated in affective disorders, including p.Ala4551Gly of FAT1, p.Val231Leu of HOMER3, and p.Ile185Met of GPM6B. These three rare variants were assumed to be inherited from their parents. Prompted by these findings, we suggest that these rare inherited variants may interact with each other and lead to psychiatric conditions in these two families. Our observations support the conclusion that inherited rare variants may contribute to the heritability of psychiatric disorders.
Collapse
Affiliation(s)
- I-Hang Chung
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
- Department of Psychiatry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Hsuan Fang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Cilleros-Portet A, Lesseur C, Marí S, Cosin-Tomas M, Lozano M, Irizar A, Burt A, García-Santisteban I, Martín DG, Escaramís G, Hernangomez-Laderas A, Soler-Blasco R, Breeze CE, Gonzalez-Garcia BP, Santa-Marina L, Chen J, Llop S, Fernández MF, Vrijhed M, Ibarluzea J, Guxens M, Marsit C, Bustamante M, Bilbao JR, Fernandez-Jimenez N. Potentially causal associations between placental DNA methylation and schizophrenia and other neuropsychiatric disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286905. [PMID: 36945560 PMCID: PMC10029044 DOI: 10.1101/2023.03.07.23286905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Increasing evidence supports the role of placenta in neurodevelopment and potentially, in the later onset of neuropsychiatric disorders. Recently, methylation quantitative trait loci (mQTL) and interaction QTL (iQTL) maps have proven useful to understand SNP-genome wide association study (GWAS) relationships, otherwise missed by conventional expression QTLs. In this context, we propose that part of the genetic predisposition to complex neuropsychiatric disorders acts through placental DNA methylation (DNAm). We constructed the first public placental cis-mQTL database including nearly eight million mQTLs calculated in 368 fetal placenta DNA samples from the INMA project, ran cell type- and gestational age-imQTL models and combined those data with the summary statistics of the largest GWAS on 10 neuropsychiatric disorders using Summary-based Mendelian Randomization (SMR) and colocalization. Finally, we evaluated the influence of the DNAm sites identified on placental gene expression in the RICHS cohort. We found that placental cis-mQTLs are highly enriched in placenta-specific active chromatin regions, and useful to map the etiology of neuropsychiatric disorders at prenatal stages. Specifically, part of the genetic burden for schizophrenia, bipolar disorder and major depressive disorder confers risk through placental DNAm. The potential causality of several of the observed associations is reinforced by secondary association signals identified in conditional analyses, regional pleiotropic methylation signals associated to the same disorder, and cell type-imQTLs, additionally associated to the expression levels of relevant immune genes in placenta. In conclusion, the genetic risk of several neuropsychiatric disorders could operate, at least in part, through DNAm and associated gene expression in placenta.
Collapse
Affiliation(s)
- Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergi Marí
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valéncia, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
- Biodonostia Health Research Institute, 20013, San Sebastian, Spain
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Diego Garrido Martín
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Geòrgia Escaramís
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Casanova 143, Barcelona, Spain
| | - Alba Hernangomez-Laderas
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raquel Soler-Blasco
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valéncia, Valencia, Spain
- Department of Nursing, Universitat de València, Valencia, Spain
| | - Charles E. Breeze
- UCL Cancer Institute, University College London, 72 Huntley St, London WC1E 6DD, United Kingdom
| | - Bárbara P. Gonzalez-Garcia
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biodonostia Health Research Institute, 20013, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Avenida Navarra 4, 20013, San Sebastian, Spain
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valéncia, Valencia, Spain
| | - Mariana F. Fernández
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biomedical Research Center (CIBM) & Department of Radiology and Physical Medicine, School of Medicine University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Martine Vrijhed
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biodonostia Health Research Institute, 20013, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Avenida Navarra 4, 20013, San Sebastian, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|