1
|
Ji Z, Meng L, Sun X, Han R, Yang Y, Wang J, Zheng N. Comprehensive analysis of species-specific differences in fatty acid composition and proteome of milk fat globules in human and animals. Food Chem X 2025; 27:102431. [PMID: 40248317 PMCID: PMC12005228 DOI: 10.1016/j.fochx.2025.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Human milk, the gold standard for infant nutrition, precisely captures infant needs. This study analyzed the particle size distribution, fatty acid (FA) profile, and milk fat globule membrane (MFGM) proteome of milk fat globules (MFGs) in human milk and eight types of animal milks. Donkey and horse milks showed a greater abundance of smaller MFGs (0-5 μm). Human milk was richer in monounsaturated FAs, such as oleic acid and nervonic acid, whereas donkey had the most polyunsaturated FAs like linoleic acid and cis-11,14-eicosadienoic acid. Among the identified 1253 MFGM proteins, human milk showed significantly higher abundance of several novel immune enhancers including adiponectin B and vitronectin, antioxidases, and lipid metabolism regulators. Meanwhile, sheep milk and yak milk displayed greater abundance of zinc-α-2-glycoprotein and selenoprotein F, respectively. This study revealed physicochemical differences in MFGs between humans and eight types of animals, offering insights for improving animal-milk-based formulas for infants' nutritional needs.
Collapse
Affiliation(s)
- Zhongyuan Ji
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xueheng Sun
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rongwei Han
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Shandong Technology Innovation Center of Special Food, Qingdao 266109, Shandong, China
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Khan MZ, Chen W, Li M, Ren W, Huang B, Kou X, Ullah Q, Wei L, Wang T, Khan A, Zhang Z, Li L, Wang C. Is there sufficient evidence to support the health benefits of including donkey milk in the diet? Front Nutr 2024; 11:1404998. [PMID: 39385792 PMCID: PMC11462490 DOI: 10.3389/fnut.2024.1404998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Donkey milk has attracted attention due to its distinctive nutritional composition and potential health advantages, particularly because of its whey protein content, which includes lysozyme, α-lactalbumin, lactoferrin, and β-lactoglobulin and vitamin C, among other components. These elements contribute to immunoregulatory, antimicrobial, antioxidant, and anti-inflammatory properties, positioning donkey milk as a possible therapeutic option. In addition, due to the low levels of caseins, the casein-to-whey protein ratio, and the β-lactoglobulin content in donkey milk, it presents an optimal alternative for infant formula for individuals with cow's milk allergies. Moreover, research into donkey milk's potential for cancer prevention, diabetes management, and as a treatment for various diseases is ongoing, thanks to its bioactive peptides and components. Nevertheless, challenges such as its low production yield and the not fully understood mechanisms behind its potential therapeutic role necessitate more thorough investigation. This review consolidates the existing knowledge on the therapeutic possibilities of donkey milk, emphasizing its importance for human health and the need for more detailed studies to confirm its health benefits.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Mengmeng Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wei Ren
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Lin Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Zhao H, Liu X, Amantai X, Bi J, Cao X, Yue X. Characterization and Comparison Analysis of Milk Fat Globule Membrane Proteins between Human and Porcine Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3210-3217. [PMID: 38291649 DOI: 10.1021/acs.jafc.3c06298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This study aimed to explore the differences in milk fat globule membrane (MFGM) proteins between human milk (HM) and porcine milk (PM) using a label-free quantitative proteomic approach. A total of 3920 and 4001 MFGM proteins were identified between PM and HM, respectively. Among them, 3520 common MFGM proteins were detected, including 956 significant differentially expressed MFGM proteins (DEPs). Gene ontology (GO) enrichment analysis showed that the DEPs were highly enriched in the lipid metabolic process and intrinsic component of membrane. Kyoto Encyclopedia of Genes and Genomes pathways suggested that protein processing in the endoplasmic reticulum was the most highly enriched pathway, followed by peroxisome, complement, and coagulation cascades. This study reflects the difference in the composition of MFGM proteins between HM and PM and provides a scientific and systematic reference for the development of MFGM protein nutrition.
Collapse
Affiliation(s)
- Huiwen Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xiakouna Amantai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayang Bi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Martin Carli JF, Dzieciatkowska M, Hernandez TL, Monks J, McManaman JL. Comparative proteomic analysis of human milk fat globules and paired membranes and mouse milk fat globules identifies core cellular systems contributing to mammary lipid trafficking and secretion. Front Mol Biosci 2023; 10:1259047. [PMID: 38169886 PMCID: PMC10759240 DOI: 10.3389/fmolb.2023.1259047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Human milk delivers critical nutritional and immunological support to human infants. Milk fat globules (MFGs) and their associated membranes (MFGMs) contain the majority of milk lipids and many bioactive components that contribute to neonatal development and health, yet their compositions have not been fully defined, and the mechanisms responsible for formation of these structures remain incompletely understood. Methods: In this study, we used untargeted mass spectrometry to quantitatively profile the protein compositions of freshly obtained MFGs and their paired, physically separated MFGM fractions from 13 human milk samples. We also quantitatively profiled the MFG protein compositions of 9 pooled milk samples from 18 lactating mouse dams. Results: We identified 2,453 proteins and 2,795 proteins in the majority of human MFG and MFGM samples, respectively, and 1,577 proteins in mouse MFGs. Using paired analyses of protein abundance in MFGMs compared to MFGs (MFGM-MFG; 1% FDR), we identified 699 proteins that were more highly abundant in MFGMs (MFGM-enriched), and 201 proteins that were less abundant in MFGMs (cytoplasmic). MFGM-enriched proteins comprised membrane systems (apical plasma membrane and multiple vesicular membranes) hypothesized to be responsible for lipid and protein secretion and components of membrane transport and signaling systems. Cytoplasmic proteins included ribosomal and proteasomal systems. Comparing abundance between human and mouse MFGs, we found a positive correlation (R 2 = 0.44, p < 0.0001) in the relative abundances of 1,279 proteins that were found in common across species. Discussion: Comparative pathway enrichment analyses between human and mouse samples reveal similarities in membrane trafficking and signaling pathways involved in milk fat secretion and identify potentially novel immunological components of MFGs. Our results advance knowledge of the composition and relative quantities of proteins in human and mouse MFGs in greater detail, provide a quantitative profile of specifically enriched human MFGM proteins, and identify core cellular systems involved in milk lipid secretion.
Collapse
Affiliation(s)
- Jayne F. Martin Carli
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Teri L. Hernandez
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jenifer Monks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James L. McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Wang C, Zhao R, Fu W, Li S, Cheng J, Jiang S, Guo M. Insights from 4D Label-Free Proteomic Analysis into Variation of Milk Fat Globule Membrane Proteins of Human Milk Associated with Infant's Gender. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12116-12128. [PMID: 37503859 DOI: 10.1021/acs.jafc.3c01257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Milk fat globule membrane (MFGM) protein profiles of breast milk collected from women in northeast China with male or female babies were investigated using a four-dimensional (4D) label-free proteomic technique. Altogether, 2538 proteins were detected and quantified and 249 were differentially expressed, with 198 decreased proteins compared to the samples of mothers with female babies. Different proteins associated with infant's gender were principally located in nuclear. The differentially expressed proteins were mainly involved in gene ontology (GO) functions of the cellular process, binding, and cell and found to be distributed in lipid-related biological processes and molecular functions to a large extent. The pathway of neurodegeneration-multiple disease ranked top for the altered proteins. The screened proteins were observed to contain some proteins related to typical functions of immunity, lipid metabolism, digestion, and growth and development. 114 proteins formed a relatively compact network (269 interactions) and dolichyl-diphospho-oligosaccharide-protein glycosyltransferase subunit 2 interacted the most with other proteins as the hub protein. MFGM proteins of breast milk were affected by the sex of offspring, and these findings may provide useful information for reasonable adjustments of infant formula powder specifically for boys or girls in the market.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, Jilin University, Changchun 130062, China
| | - Ru Zhao
- Department of Food Science, Jilin University, Changchun 130062, China
| | - Wenfei Fu
- Department of Food Science, Jilin University, Changchun 130062, China
| | - Shuyi Li
- Department of Food Science, Jilin University, Changchun 130062, China
| | - Jianjun Cheng
- Department of Food Science, Northeast Agriculture University, Harbin 150036, China
| | - Shilong Jiang
- R&D center, Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
6
|
Microbiological Quality of Raw Donkey Milk from Serbia and Its Antibacterial Properties at Pre-Cooling Temperature. Animals (Basel) 2023; 13:ani13030327. [PMID: 36766215 PMCID: PMC9913105 DOI: 10.3390/ani13030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to examine the microbiological quality of raw donkey milk of an indigenous Serbian breed as well as the changes in the microbial populations during storage at 4 °C. In addition, antibacterial activity of donkey milk against E. coli, L. monocytogenes and S. aureus at 15 °C as well as the content of the two main antibacterial proteins lysozyme and lactoferrin were investigated. Microbiological examination of 137 individual milk samples collected over a period of 21 months showed good microbiological quality since foodborne pathogens such as Salmonella spp. and L. monocytogenes were not detected in any of the analyzed samples, while the number of E. coli, Enterobacteriaceae, total coliform bacteria, sulfite-reducing Clostridia and aerobic sporogenic bacteria was below the limit of quantification (<1 cfu mL-1). During the six-days storage at 4 °C, total bacterial counts and the counts of lactic acid bacteria remained at the initial level while pathogenic bacteria were not detected. The strongest antibacterial activity of the tested milk was observed against E. coli, while S. aureus was the least sensitive to milk antibacterial compounds. Although further research is needed to fully elucidate the antibacterial mechanism and synergistic activity of different compounds in donkey milk, the high content lysozyme (2.63 ± 0.03 g L-1) and lactoferrin (15.48 mg L-1) observed in tested milk could contribute to its strong antibacterial activity and extension of the storage period during which it can be safely consumed.
Collapse
|
7
|
Tan X, He Y, Qin Y, Yan Z, Chen J, Zhao R, Zhou S, Irwin DM, Li B, Zhang S. Comparative analysis of differentially abundant proteins between high and low intramuscular fat content groups in donkeys. Front Vet Sci 2022; 9:951168. [PMID: 35967999 PMCID: PMC9364086 DOI: 10.3389/fvets.2022.951168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Intramuscular fat (IMF) is an important regulator that determines meat quality, and its content is closely related to flavor, tenderness, and juiciness. Many studies have used quantitative proteomic analysis to identify proteins associated with meat quality traits in livestock, however, the potential candidate proteins that influence IMF in donkey muscle are not fully understood. In this study, we performed quantitative proteomic analysis, with tandem-mass-tagged (TMT) labeling, with samples from the longissimus dorsi (LD) muscle of the donkey. A total of 585,555 spectra were identified from the six muscle samples used in this study. In total, 20,583 peptides were detected, including 15,279 unique peptides, and 2,540 proteins were identified. We analyzed differentially abundant proteins (DAPs) between LD muscles of donkeys with high (H) and low (L) IMF content. We identified 30 DAPs between the H and L IMF content groups, of which 17 were upregulated and 13 downregulated in the H IMF group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of these DAPs revealed many GO terms (e.g., bone morphogenetic protein (BMP) receptor binding) and pathways (e.g., Wnt signaling pathway and Hippo signaling pathway) involved in lipid metabolism and adipogenesis. The construction of protein-protein interaction networks identified 16 DAPs involved in these networks. Our data provide a basis for future investigations into candidate proteins involved in IMF deposition and potential new approaches to improve meat quality in the donkey.
Collapse
Affiliation(s)
- Xiaofan Tan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yu He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanchun Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhiwei Yan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jing Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruixue Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shenglan Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Papademas P, Mousikos P, Aspri M. Valorization of donkey milk: Technology, functionality, and future prospects. JDS COMMUNICATIONS 2022; 3:228-233. [PMID: 36338810 PMCID: PMC9623768 DOI: 10.3168/jdsc.2021-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/22/2022] [Indexed: 05/05/2023]
Abstract
Donkey milk has been in the spotlight for the past 2 decades, mainly because of its potential as a functional food that has positive effects on human health. Nevertheless, challenges remain regarding farming practices, milk yield and milk processing, the introduction of minimal technology, and the use of donkey milk to produce dairy products. In this review, we highlight the fact that interdisciplinary research is needed to provide the scientific community with new knowledge on donkey milk, especially through human clinical trials.
Collapse
|
9
|
Cao M, Huang L, Jin S, Zhao M, Zheng Y. Comparative Proteomics Study of Yak Milk from Standard and Naturally Extended Lactation Using iTRAQ Technique. Animals (Basel) 2022; 12:ani12030391. [PMID: 35158713 PMCID: PMC8833776 DOI: 10.3390/ani12030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Extended lactation is a common phenomenon in lactating yaks under grazing and natural reproduction conditions. To elucidate differences in milk protein compositions and mammary gland functions between yaks of standard lactation (TL yaks) and prolonged lactation (HL yaks), whole milk samples of TL yaks and HL yaks (n = 15 each) were collected from a yak pasture at the northwest highland of China. The iTRAQ technique was used to compare the skim milk proteins in the two yak groups. A total of 202 differentially expressed proteins (DEPs) were revealed, among which 109 proteins were up-regulated and 93 were down-regulated in the milk of HL yaks compared to TL yaks. Caseins including κ-casein, αs1-casein, αs2-casein, and β-casein were up-regulated in HL yak milk over 1.43-fold. The GO function annotation analysis showed that HL yaks produced milk with characteristics of milk at the degeneration stage, similar to that of dairy cows. KEGG enrichment showed that the metabolic pathways with the most differences are those that involve carbohydrate metabolism and the biosynthesis of amino acids. The present results highlight detailed differences in skim milk proteins produced by HL yaks and TL yaks and suggest that the mammary gland of HL yak is at the degeneration stage.
Collapse
|
10
|
Chen L, Zhao ZJ, Meng QF. Detection of Specific IgG-Antibodies Against Toxoplasma gondii in the Serum and Milk of Domestic Donkeys During Lactation in China: A Potential Public Health Concern. Front Cell Infect Microbiol 2021; 11:760400. [PMID: 34746030 PMCID: PMC8566817 DOI: 10.3389/fcimb.2021.760400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a worldwide zoonotic protozoan. Donkeys are often susceptible to many pathological agents, acting as carriers of pathogens for other animal species and humans. However, data on the prevalence of T. gondii in donkeys during lactation and on the status of antibodies against T. gondii in donkey milk are lacking. A cross-sectional study evaluated the variation of the anti-T. gondii antibodies in the blood and milk of domestic donkeys during lactation. A total of 418 domestic donkeys were randomly selected from the Shandong province, eastern China from January 2019 to March 2020. The anti-T. gondii antibodies were found in 11.72% (49/418) serum and 9.81% (41/418) milk samples using a commercial ELISA kit, respectively. There was a very high consistency between the serum and milk (Spearman’s coefficient = 0.858, p-value < 0.0001 and Kendall’s tau = 0.688, p-value < 0.0001), particularly at the 45th to 60th day of lactation. The present results of the statistical analysis showed that the history of abortion (p = 0.026; adjusted OR = 2.20; 95% CI: 1.15–4.20) and cat in the house (p = 0.008; adjusted OR = 2.36; 95% CI: 1.26–4.44) were significantly associated with T. gondii infection in the domestic donkeys. This is the first report to detect antibodies against T. gondii in donkey milk in China. These results indicate a potential risk of humans contracting the infection through the consumption of raw milk from the naturally infected donkeys.
Collapse
Affiliation(s)
- Long Chen
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zi-Jian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | | |
Collapse
|