1
|
Yang Q, Ran Y, Guo Y, Zeng J, Song Y, Qiao D, Xu H, Cao Y. Enhancement of lipid synthesis by the transcription factor Asg1 in Saitozyma podzolica zwy-2-3 under dissolved oxygen stress. BIORESOURCE TECHNOLOGY 2024; 411:131312. [PMID: 39168414 DOI: 10.1016/j.biortech.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Microbial oils have been of considerable interest as food additives and biofuel resources due to high lipid contents, but lipid accumulation of oleaginous microorganisms can be induced by environmental stresses, such as dissolved oxygen (DO), which limit large-scale lipid production. Here, DO stress gave rise to the endogenous nitric oxide (NO) level to mediate S-nitrosylation of SpAsg1, regulating the lipid accumulation in Saitozyma podzolica zwy-2-3. Notably, qRT-PCR, yeast one-hybrid, dual-luciferase reporter assays, and metabolomics analysis exhibited that overexpression of SpAsg1 promoted lipid synthesis by directly regulation of glucose metabolism, enhancing glucose uptake, ATP and NADPH contents under DO stress. Meanwhile, SpAsg1 improved the antioxidant capacity to reduce the intracellular reactive oxygen species (ROS) and NO levels. Overall, we systematically investigated the regulation of SpAsg1 on lipid metabolism of S. podzolica zwy-2-3 under DO stress, which sheds light on further studies for alleviating oxygen limitation of lipid production in microbial industry.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yihan Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Wang X, Tang X, Chen H, Zhang H, Chen YQ, Zhao J, Chen W. Purification and characterization of isocitrate dehydrogenase from Mortierella alpina. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Cui J, Chen H, Tang X, Zhang H, Chen YQ, Chen W. Characterization and Molecular Mechanism of a Novel Cytochrome b5 Reductase with NAD(P)H Specificity from Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5186-5196. [PMID: 35416034 DOI: 10.1021/acs.jafc.1c08108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electron-transfer capabilities of cytochrome b5 reductase (Cyt b5R) and NADPH supply have been shown to be critical factors in microbial fatty acid synthesis. Unfortunately, Cyt b5R substrate specificity is limited to the coenzyme NADH. In this study, we discovered that a novel Cyt b5R from Mortierella alpina (MaCytb5RII) displays affinity for NADPH and NADH. The enzymatic characteristics of high-purity MaCytb5RII were determined with the Km,NADPH and Km,NADH being 0.42 and 0.07 mM, respectively. MaCytb5RII shows high specific activity at 4 °C and pH 9.0. We anchored the residues that interacted with the coenzymes using the homology models of MaCytb5Rs docking NAD(P)H and FAD. The enzyme activity analysis of the purified mutants MaCytb5RII[S230N], MaCytb5RII[Y242F], and MaCytb5RII[S272A] revealed that Ser230 is essential for MaCytb5RII to have dual NAD(P)H dependence, whereas Tyr242 influences MaCytb5RII's NADPH affinity and Ala272 greatly decreases MaCytb5RII's NADH affinity.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27127, United States
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|