1
|
Xu M, Duan M, Chen M, Mahal A, Yang L, Meng C, Zhang Z, Ren J, Obaidullah AJ, Li S, Wang C. Study on the activity of targeted delivery of DOX against melanoma by exosome-like nanovesicles of Rhodiola rosea. Biochim Biophys Acta Gen Subj 2025; 1869:130776. [PMID: 39970993 DOI: 10.1016/j.bbagen.2025.130776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Melanoma is the main cause of death from skin cancer. The current treatment methods have prominent toxic side effects. In order to more effectively inhibit melanoma and reduce the toxic side effects during treatment, this paper constructs an engineering system using DSPE-PEG2000-pYEEIE(pYEEIE) molecules to modify exosome-like nanovesicles vesicles of Rhodiola rosea (RELNs) and load Doxorubicin (DOX). As a drug system, the aim is to achieve better targeting activity of the system towards melanoma cell A375. The results showed that the morphology and particle size of the prepared RELNs met the defined criteria for evaluating extracellular vesicles. The pYEEIE-RELNs-DOX drug delivery system has a better inhibitory effect on cell proliferation compared to DOX and RELNs-DOX. At the same time, the pYEEIE-RELN-DOX drug delivery system also showed better targeting towards tumor cells. In summary, this study proposes for the first time RELNs as a new generation of drug delivery carriers and uses them for drug delivery and inhibition of melanoma cell toxicity. This lays the foundation for subsequent animal and clinical experiments, and provides new ideas for the treatment of skin cancer caused by melanoma.
Collapse
Affiliation(s)
- Moxun Xu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Ming Chen
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Lin Yang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Chen Meng
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Jungang Ren
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shuxian Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China.
| | - Chen Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China.
| |
Collapse
|
2
|
Gong Q, Xiong F, Zheng Y, Guo Y. Tea-derived exosome-like nanoparticles prevent irritable bowel syndrome induced by water avoidance stress in rat model. J Gastroenterol Hepatol 2024; 39:2690-2699. [PMID: 39121461 PMCID: PMC11660198 DOI: 10.1111/jgh.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND AND AIM Exosome-like nanoparticles (ELNs) have emerged as crucial mediators of intercellular communication, evaluated as potential bioactive nutraceutical biomolecules. We hypothesized that oral ELNs have some therapeutic effect on irritable bowel syndrome (IBS). METHODS In our study, ELNs from tea (Camellia sinensis) leaves were extracted by differential centrifugation. We investigated the role of ELNs by assessing visceral hypersensitivity, body weight, bowel habits, tight junctions, and corticotropin-releasing hormone (CRH) in rats subjected to water avoidance stress (WAS) to mimic IBS with and without ELNs (1 mg/kg per day) for 10 days. RESULTS The average diameter of ELNs from LCC, FD and MZ tea tree were 165 ± 107, 168 ± 94, and 168 ± 108 nm, the concentration of ELNs were 1.2 × 1013, 1 × 1013, and 1.5 × 1013 particles/mL, respectively. ELNs can be taken up by intestinal epithelial cells. In WAS rats, ELNs significantly restored weight, recovered tight junctions, decreased CRH, and CRH receptor 1 expression levels and inhibited abdominal hypersensitivity in comparison to positive control. CONCLUSIONS Oral tea-derived ELN improves symptoms of IBS by potentially modulating the CRH pathway.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of ChengduThe Affiliated Hospital of Southwest Jiaotong UniversityChengduSichuanChina
| | - Feng Xiong
- Department of CardiologyThe Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of ChengduChengduChina
| | - Yaxian Zheng
- Pharmacist‐In‐Charge Department of PharmacyAffiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of ChengduChengduSichuanChina
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of ChengduThe Affiliated Hospital of Southwest Jiaotong UniversityChengduSichuanChina
| |
Collapse
|
3
|
Lv L, Li Z, Liu X, Zhang W, Zhang Y, Liang Y, Zhang Z, Li Y, Ding M, Li R, Lin J. Revolutionizing medicine: Harnessing plant-derived vesicles for therapy and drug transport. Heliyon 2024; 10:e40127. [PMID: 39634409 PMCID: PMC11615498 DOI: 10.1016/j.heliyon.2024.e40127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of extracellular vesicles (EVs), which are natural lipid bilayer membrane structures facilitating intercellular substance and information exchange, has sparked innovative approaches in drug development and carrier enhancement. Plant-derived EVs notably offer advantages including low preparation cost, low immunogenicity, flexible drug delivery, high stability, good tissue permeability, and high inherent medicinal value compared to their animal-derived counterparts. Despite these promising attributes, the research on plant-derived EVs remains fragmented and lacks comprehensive synthesis. This review aims to address this gap by summarizing the isolation methods, biological characteristics, and storage techniques of plant-derived EVs. Additionally, we explore the potential of plant-derived EVs as therapeutic agents and drug carriers for treating various diseases. Finally, we delineate the current impediments to plant-derived EV development and highlight future research directions. By providing a detailed overview, we hope to facilitate further research and application in this emerging field.
Collapse
Affiliation(s)
- Li Lv
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Zhenkun Li
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Xin Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Wenhui Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Yi Zhang
- Department of Thyroid - Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Ying Liang
- Department of Thyroid - Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Zhixian Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Yueqiao Li
- Department of Medical Oncology, Yanjin Country People's Hospital, No. 87, Pingjie Street, Yanjin County, Zhaotong, 657500, Yunnan, China
| | - Mingxia Ding
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| | - Rongqing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Jie Lin
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wuhua District, Kunming, 650101, Yunnan, China
| |
Collapse
|
4
|
Liu Z, Nian L, Cai X, Hu Y, Lei J, Xiao J. A robust collagen-targeting MRI peptide contrast agent for in vivo imaging of hepatic fibrosis. Chem Commun (Camb) 2024; 60:12453-12456. [PMID: 39380539 DOI: 10.1039/d4cc00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We herein report the construction of a robust MRI peptide contrast agent Gd-ICTP with superior selectivity for type I collagen, enabling the accurate and non-invasive detection of hepatic fibrosis in vivo.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yue Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
5
|
Gong Q, Sun Y, Liu L, Pu C, Guo Y. Oral administration of tea-derived exosome-like nanoparticles protects epithelial and immune barrier of intestine from psychological stress. Heliyon 2024; 10:e36812. [PMID: 39281430 PMCID: PMC11395767 DOI: 10.1016/j.heliyon.2024.e36812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Psychological stress disrupts the integrity of the intestinal barrier and is strongly linked to emotional disorders, behavioral changes, and gastrointestinal dysfunction. However, there are limited treatment options available for repairing the damage to the intestinal barrier. As a natural plant-based health beverage, tea (Camellia sinensis) has been shown to have various potentially advantageous effects on the intestinal barrier and immune function. In this study, we extracted bioactive molecules from tea leaves, named exosome-like nanoparticles (ELNs), and then examined their potential protective properties for the intestinal barrier. Through in vitro experimentation, we investigated whether tea-derived ELNs (TELNs) could offer a protective effect against lipopolysaccharides-induced damage to the intestinal barrier. In an in vivo experiment, rats were exposed to water avoidance stress and subsequently administered TELNs orally. The administration of TELNs resulted in the enhancement of the epithelial barrier in the intestine, effectively preventing bacterial translocation to the submucosae. Additionally, TELNs were found to improve the function of the intestinal immune barrier through the mediation of interleukin-22 and the increased secretion of antimicrobial peptide Reg3g. Notably, miR-44 and miR-54 in TELNs exhibited similar protective effects on the intestinal barrier. These findings suggest that TELNs possess the ability to restore the integrity of the intestinal barrier in the context of psychological stress.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Chunlan Pu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| |
Collapse
|
6
|
Zhang S, Wang Q, Tan DEL, Sikka V, Ng CH, Xian Y, Li D, Muthiah M, Chew NWS, Storm G, Tong L, Wang J. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12466. [PMID: 38887165 PMCID: PMC11183959 DOI: 10.1002/jev2.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qiyue Wang
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Daniel En Liang Tan
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vritika Sikka
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
| | - Yan Xian
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dan Li
- Department of Food Science and Technology, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
- National University Centre for Organ TransplantationNational University Health SystemSingaporeSingapore
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart CentreNational University Health SystemSingaporeSingapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lingjun Tong
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute (CVRI)National University Heart Centre Singapore (NUHCS)SingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
7
|
Chen L, Guo W, Mao C, Shen J, Wan M. Liver fibrosis: pathological features, clinical treatment and application of therapeutic nanoagents. J Mater Chem B 2024; 12:1446-1466. [PMID: 38265305 DOI: 10.1039/d3tb02790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Liver fibrosis is a reversible damage-repair response, the pathological features of which mainly include damage to hepatocytes, sinusoid capillarization, hepatic stellate cells activation, excessive accumulation of extracellular matrix and inflammatory response. Although some treatments (including drugs and stem cell therapy) for these pathological features have been shown to be effective, more clinical trials are needed to confirm their effectiveness. In recent years, nanomaterials-based therapies have emerged as an innovative and promising alternative to traditional drugs, being explored for the treatment of liver fibrosis diseases. Natural nanomaterials (including extracellular vesicles) and synthetic nanomaterials (including inorganic nanomaterials and organic nanomaterials) are developed to facilitate drug targeting delivery and combination therapy. In this review, the pathological features of liver fibrosis and the current anti-fibrosis drugs in clinical trials are briefly introduced, followed by a detailed introduction of the therapeutic nanoagents for the precise delivery of anti-fibrosis drugs. Finally, the future development trend in this field is discussed.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Tabeeva G, Silachev D, Vishnyakova P, Asaturova A, Fatkhudinov T, Smetnik A, Dumanovskaya M. The Therapeutic Potential of Multipotent Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Endometrial Regeneration. Int J Mol Sci 2023; 24:9431. [PMID: 37298382 PMCID: PMC10253661 DOI: 10.3390/ijms24119431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Disruption of endometrial regeneration, fibrosis formation, and intrauterine adhesions underlie the development of "thin" endometrium and/or Asherman's syndrome (AS) and are a common cause of infertility and a high risk for adverse obstetric outcomes. The methods used (surgical adhesiolysis, anti-adhesive agents, and hormonal therapy) do not allow restoration of the regenerative properties of the endometrium. The experience gained today with cell therapy using multipotent mesenchymal stromal cells (MMSCs) proves their high regenerative and proliferative properties in tissue damage. Their contribution to regenerative processes is still poorly understood. One of these mechanisms is based on the paracrine effects of MMSCs associated with the stimulation of cells of the microenvironment by secreting extracellular vesicles (EVs) into the extracellular space. EVs, whose source is MMSCs, are able to stimulate progenitor cells and stem cells in damaged tissues and exert cytoprotective, antiapoptotic, and angiogenic effects. This review described the regulatory mechanisms of endometrial regeneration, pathological conditions associated with a decrease in endometrial regeneration, and it presented the available data from studies on the effect of MMSCs and their EVs on endometrial repair processes, and the involvement of EVs in human reproductive processes at the level of implantation and embryogenesis.
Collapse
Affiliation(s)
- Gyuzyal Tabeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (P.V.); (A.A.); (A.S.); (M.D.)
| | - Denis Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (P.V.); (A.A.); (A.S.); (M.D.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Alexandra Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (P.V.); (A.A.); (A.S.); (M.D.)
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Antonina Smetnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (P.V.); (A.A.); (A.S.); (M.D.)
| | - Madina Dumanovskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (P.V.); (A.A.); (A.S.); (M.D.)
| |
Collapse
|
9
|
Liu Z, Nian L, Cai X, Hu Y, Lei J, Xiao J. A robust collagen-targeting MRI peptide contrast agent for in vivo imaging of hepatic fibrosis. Chem Commun (Camb) 2023; 59:6068-6071. [PMID: 37114522 DOI: 10.1039/d3cc01096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We herein report the construction of a robust MRI peptide contrast agent Gd-ICTP with superior selectivity for type I collagen, enabling the accurate and non-invasive detection of hepatic fibrosis in vivo.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yue Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|