1
|
Wang H, Wu Y, Chen S, Zhao Y, Li C, Xiang H, Wang D, Wei Y, Wang Y. Unlocking the chemical basis of fermented golden pompano (Trachinotus ovatus) inoculated with indigenous Bacillus subtilis: Focus on the role of lipid oxidation on volatile flavor formation. Food Chem 2025; 472:142929. [PMID: 39855138 DOI: 10.1016/j.foodchem.2025.142929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Fermented golden pompano is a traditional food valued for its distinctive flavor profile, largely influenced by lipid oxidation. This study evaluated the role of local Bacillus subtilis SCSMX-2 strain in regulating lipid oxidation and improving the flavor profile of the fermented golden pompano. Untargeted metabolomics was used to identify 206 differential metabolites, predominantly lipids, amino acids, and peptides. Enrichment analysis revealed glycerophospholipid metabolism as a key lipid pathway. SCSMX-2 induced moderate lipid oxidation, significantly increasing free fatty acid content, especially omega-3 polyunsaturates. Characterization of 148 volatile compounds revealed a notable increase in lipid oxidation-derived flavor compounds, with 11, including seven lipid derivatives, emerging as distinctive. Correlation analysis showed that secondary lipid oxidation products, such as sn-glycero-3-phosphoethanolamine and lysophosphatidylcholine, are precursors to key flavor compounds. These findings provide a scientific basis for the targeted regulation of flavors in traditional fermented fish.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China.
| |
Collapse
|
2
|
Zhang K, Zhang TT, Qi XY, Xu BC, Qin L, Zhu BW, Huang XH. Mechanism of salt effect on flavor formation in Lactiplantibacillus plantarum fermented tilapia: integrated multiple intelligent sensory and flavor omics analyses. Food Funct 2025; 16:2401-2414. [PMID: 39996359 DOI: 10.1039/d4fo05224b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Improving the flavor and texture of low-salt fermented products addresses the demands of the health-conscious era and consumers' preferences. In this study, the characteristic flavor formation of dry-cured tilapia fermented by Lactiplantibacillus plantarum with different concentrations of NaCl was studied using flavor omics. The results showed that an appropriate concentration of NaCl improved the sensory and texture properties of the product. The 4% NaCl concentration increased the aroma intensity of the fermented tilapia. Under the action of 4% salt, the metabolism of Lactiplantibacillus plantarum promoted the formation of alcohols and aldehydes. The concentrations of 1-octen-3-ol and hexanal were significantly increased, enhancing the aroma of roasted meat. Meanwhile, low NaCl treatment promoted Lactiplantibacillus plantarum to degrade proteins and convert them into more free amino acids and nucleotides. Fermentation of tilapia with 4% salt significantly promoted the production of umami and sweet amino acids, such as glutamic acid and glycine. Additionally, it inhibited the production of bitter amino acids, such as leucine. Furthermore, the results contribute to a better understanding of the effects of NaCl on flavor formation in fermented tilapia and facilitate the development of flavor in low-salt foods.
Collapse
Affiliation(s)
- Ke Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei 230601, Anhui, China
| | - Ting-Ting Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Yi Qi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bao-Cai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei 230601, Anhui, China
| | - Lei Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bei-Wei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Shui S, Chen Y, Yan H, Song J, Liu S, Benjakul S, Zhang B. Comparative analyses of physicochemical and volatile flavor characteristics in hooked, trawl-net, and radar-net hairtail ( Trichiurus haumela) muscles during long-term cryopreservation at -18°C. Food Sci Nutr 2024; 12:8159-8170. [PMID: 39479670 PMCID: PMC11521657 DOI: 10.1002/fsn3.4381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 11/02/2024] Open
Abstract
Chemical analysis showed that pH, b* values, myosin turbidity, carbonyl content, and surface hydrophobicity elevated in hooked, trawl-net, and radar-net hairtail (Trichiurus haumela, HH, TH, and RH) muscles with the prolonged cryopreservation time (-18℃, 120 d). In contrast, L*, a* values, textural properties, and myosin solubility existed decreasing trends. Microstructural results showed that freezing resulted in disordered myofibrils, decreased collagen fibers, widened myofibrillar space, and increased fragmentation in hairtail muscles. Furthermore, volatile flavor analysis suggested that aldehydes, ketones, alcohols, and amines were the key factors for the overall flavor formation in hairtails during cold storage. Pearson correlation coefficient analysis revealed that the color, texture, and protein oxidation had close correlations with VOCs. Among the three different kinds of hairtail, fresh RH fillets exhibited an attractive aroma with high economic value, long-term frozen TH muscle tissues were prone to deterioration in texture, microstructure, and flavor, and the HH samples presented stable quality characteristics and storage performance.
Collapse
Affiliation(s)
- Shanshan Shui
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Yu Chen
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Hongbo Yan
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
- Pisa Marine Graduate SchoolZhejiang Ocean UniversityZhoushanChina
| | - Jia Song
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Shucheng Liu
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro‐IndustryPrince of Songkla UniversityHat YaiThailand
| | - Bin Zhang
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
- Pisa Marine Graduate SchoolZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
4
|
Gao R, Xue J, Shi T, Li Y, Yuan L. Effects of 'bask in sunlight and dewed at night' on the formation of fermented flavor in shrimp paste after maturation. Food Chem 2024; 452:139546. [PMID: 38744137 DOI: 10.1016/j.foodchem.2024.139546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The purpose of the study was to illustrate the roles of three primary indexes, namely sunlight, ventilation and stirring, in the 'bask in sunlight and dewed at night' technique on the quality of shrimp paste, through a laboratory-scale design. The results showed that changes in the post-ripening fermentation conditions, especially sunlight, was instrumental in the physicochemical properties of the shrimp paste. E-nose and SPME-GC-MS were employed to assess the volatile flavor of post-ripening fermentation. A total of 29 key volatile aroma components played a crucial role in the development of post-ripening flavor in shrimp paste with or without sunlight. Lipidomic analysis revealed that sunlight promoted the oxidative degradation of FA, resulting in the production of a diverse range of flavor compounds that imparted the unique aroma of shrimp paste. The findings of this study will establish a theoretical basic for better control of the post-ripening fermentation of traditional shrimp paste.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiani Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Wang Q, Du R, Wang Y, Zhang S, Wang L, Wang L. Characterization and Differentiation of Flavor Profile of 12 Air-Dried Yak Meat Products Using GC-IMS and Multivariate Analysis. Foods 2024; 13:2626. [PMID: 39200553 PMCID: PMC11354184 DOI: 10.3390/foods13162626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Volatile organic compounds (VOCs) in food are key factors constituting their unique flavor, while the characteristics of VOCs in air-dried yak meat (AYM) from various regions of the Tibetan Plateau and their inter-regional differences remain unclear. Therefore, this study conducted a comprehensive analysis of VOCs in the five-spice (FS), spicy and numbing (SN), and aromatic and spicy (AS) versions of AYM from four regions of the Tibetan Plateau (Gansu, Qinghai, Sichuan, and Tibet) using gas chromatography-ion mobility spectrometry (GC-IMS) A total of 58 VOCs were identified, with alcohols accounting for 28.40%, ketones 22.89%, aldehydes 18.85%, and terpenes 17.61%. Topographic plots, fingerprint profiles, and multivariate analysis not only distinguished AYM of the same flavor from different regions but also discriminated those of different flavors within the same region. Furthermore, 17 key VOCs were selected as the primary aroma characteristics of the 12 types of AYM, including linalool, 3-methylbutanal, acetone, and limonene. Meanwhile, the differential VOCs for each flavor were determined, with linalyl acetate being unique to the FS, (E)-ocimene and ethyl propanoate being specific to the SN, and 2-methyl-3-(methylthio)furan-D and Hexanal-D being characteristic of the AS flavor. Based on the above results, the flavor of AYM can be improved to suit the taste of most people and increase its consumption.
Collapse
Affiliation(s)
- Qiuyu Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
| | - Rongsheng Du
- Sichuan Institute of Musk Deer Breeding, Chengdu 611800, China;
| | - Yuqi Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
| | - Shulin Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
| | - Linlin Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Lu’an Soyea Electrical Manufactring Co., Ltd., Lu’an 237000, China
| | - Lina Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.W.); (Y.W.); (S.Z.)
| |
Collapse
|
6
|
Ji L, Zhou Y, Nie Q, Luo Y, Yang R, Kang J, Zhao Y, Zeng M, Jia Y, Dong S, Gan L, Zhang J. The Potential Correlation between Bacterial Diversity and the Characteristic Volatile Flavor Compounds of Sichuan Sauce-Flavored Sausage. Foods 2024; 13:2350. [PMID: 39123542 PMCID: PMC11312067 DOI: 10.3390/foods13152350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The distinctive taste of Sichuan sauce-flavored sausage comes from an intricate microbial metabolism. The correlation between microbial composition and distinct flavor components has not been researched. The study used headspace solid-phase microextraction action with gas chromatography mass spectrometry to find flavor components and high-throughput sequencing of 16S rRNA to look at the diversity and succession of microbial communities. The correlation network model forecasted the connection between essential bacteria and the development of flavors. The study revealed that the primary flavor compounds in Sichuan sauce-flavored sausages were alcohols, aldehydes, and esters. The closely related microbes were Leuconostoc, Pseudomonas, Psychrobacter, Flavobacterium, and Algoriella. The microbes aided in the production of various flavor compounds, such as 1-octen-3-ol, benzeneacetaldehyde, hexanal, (R,R)-2,3-butanediol, and ethyl caprylate. This work has enhanced our comprehension of the diverse functions that bacteria serve in flavor development during the fermentation of Sichuan sauce-flavored sausage.
Collapse
Affiliation(s)
- Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Yanan Zhou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Qing Nie
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Yi Luo
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Rui Yang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Jun Kang
- Key Laboratory of Natural Products and Functional Food Development Research, Sichuan Vocational College of Chemical Industry, Chengdu 646000, China;
| | - Yinfeng Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Mengzhao Zeng
- Sichuan Stega Biotechnology Co., Ltd., Chengdu 610199, China;
| | - Yinhua Jia
- Sichuan Fansaoguang Food Group Co., Ltd., Chengdu 611732, China; (Y.J.); (S.D.)
| | - Shirong Dong
- Sichuan Fansaoguang Food Group Co., Ltd., Chengdu 611732, China; (Y.J.); (S.D.)
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| |
Collapse
|
7
|
Zhan Y, Li J, Li T, Xie K, Tu C, Liu Z, Pang J, Zhang B. Investigation of the Alternations in Lipid Oxidation and Lipase Activity in Air-Dried Hairtail ( Trichiurus lepturus) during Chilled Storage. Foods 2024; 13:229. [PMID: 38254530 PMCID: PMC10814810 DOI: 10.3390/foods13020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The effects of water content and water activity on the lipid stability of air-dried hairtail (Trichiurus haumela) were investigated during chilled storage. Air-dried hairtail samples with high and low water contents were comparatively analyzed over 8 days of storage at 4 °C. The results indicated that the decreases in water activity and increases in the NaCl content significantly inhibited lipid oxidation in the air-dried hairtail samples. The peroxidation value (PV), conjugated diene value (CD), thiobarbituric acid reactive substance (TBARS) value, and p-anisidine value (p-AnV) of the air-dried hairtail significantly increased with the extension of storage time. The low water content significantly inhibited the activity of neutral and alkaline lipase, in addition to lipoxygenase, and retarded the rapid increases in the non-esterified fatty acid (NEFA) content in the hairtail samples. The correlation analysis results showed that the TBARS, p-AnV, and lipase activity were positively correlated in the air-dried hairtail samples, and the lower water content significantly inhibited the progress of lipid oxidation. This study offers a theoretical framework for the industrial processing and storage of air-dried hairtail products.
Collapse
Affiliation(s)
- Yuexiang Zhan
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (J.L.)
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiagen Li
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (J.L.)
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Taiyu Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Kai Xie
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (J.L.)
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chuanhai Tu
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (J.L.)
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Xiamen 350025, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Zhang
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (J.L.)
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
8
|
Huang GL, Liu TT, Mao XM, Quan XY, Sui SY, Ma JJ, Sun LX, Li HC, Shao QS, Wang YN. Insights into the volatile flavor and quality profiles of loquat ( Eriobotrya japonica Lindl.) during shelf-life via HS-GC-IMS, E-nose, and E-tongue. Food Chem X 2023; 20:100886. [PMID: 38144837 PMCID: PMC10739855 DOI: 10.1016/j.fochx.2023.100886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
Loquat fruits are among the most popular Chinese fruits because of their unique taste and aroma. The quality profiles of these fruits during 18 days of shelf-life at 20 °C were elucidated by headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), E-nose, and E-tongue. During shelf-life period, the properties and variations of 43 (20 aldehydes, 7 esters, 6 ketones, 1 alcohol, and 1 furan) volatile flavored compounds were determined by GC-IMS, which showed that the contents of methyl 3-methyl butanoate, ethyl acetate, and dimethyl ketone gradually decrease with prolonged shelf-life time, while (E)-2-heptenal, heptanal, (E)-2-pentenal, 1-penten-3-one 3-pentanone and 2-pentylfuran increase. The PCA based on the signal intensity of GC-IMS and E-nose, revealed that loquat fruits are well distinguished at different shelf-life times. The taste profile alternates as the storage time increases, along with higher pH, and lower amounts of total soluble solids, vitamin C, and total phenolics. The visual plots of GC-IMS, E-nose, and E-tongue had good consistency, and they characterized the aroma characteristics of loquat fruits well during different shelf-life periods. The findings of this research provide a useful understanding of the flavors of loquat fruits during their prolonged shelf-life, and a potential research basis for advancements in the loquat industry.
Collapse
Affiliation(s)
- Gui-Li Huang
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Tian-Tian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Mei Mao
- School of Pharmaceutical Science and Technology, Suzhou Chien-Shiung Institute of Technology, Suzhou, Jiangsu 215411, China
| | - Xin-Yao Quan
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Si-Yao Sui
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Jia-Jia Ma
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Ling-Xiang Sun
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Hao-Cong Li
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Qian-Shuo Shao
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| | - Yu-Ning Wang
- Agricultural Product Storage and Processing Laboratory, Suzhou Academy of Agricultural Sciences, Suzhou 215105, China
| |
Collapse
|
9
|
Liu N, Li X, Hu Y, Qin L, Bao A, Qin W, Miao S. Effects of Lentilactobacillus buchneri and Kazachstania bulderi on the Quality and Flavor of Guizhou Fermented Red Sour Soup. Foods 2023; 12:3753. [PMID: 37893649 PMCID: PMC10606709 DOI: 10.3390/foods12203753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, the effects of Lentilactobacillus buchneri (L. buchneri: CCTCC M 2023228) and Kazachstania bulderi (K. bulderi: CCTCC M 2023227) on the quality characteristics and volatile flavor substances in fermented red sour soup were explored based on natural fermentation. Compared to natural fermentation (nitrite: 5.5 mg/kg; amino acid nitrogen: 0.17 g/100 g; lycopene: 63.73 µg/mL), three fortified fermentation methods using L. buchneri, K. bulderi, and both strains together significantly reduced the concentrations of nitrite (2.62, 2.49, and 2.37 mg/kg), amino acid nitrogen (0.03 g/100 g, 0.02 g/100 g, and 0.05 g/100 g), and lycopene (26.64, 32.45, and 51.89 µg/mL). Total acid content (11.53 g/kg) and lactic acid bacteria count (285.9 ± 1.65 × 106 CFU/mL) were the elements most significantly increased by fortified fermentation with L. buchneri relative to other fermentation methods. A total of 99 volatile compounds were determined in red sour soup and could be roughly classified into alcohols, aldehydes, ketones, and esters. Fortified fermentation with two strains and fortified fermentation with K. bulderi increased the content of methyl butanoate and 3-hydroxybutan-2-one-acetoin (D). This study confirmed the effects of L. buchneri and K. bulderi on the quality and flavor of fermented red sour soup and provided a theoretical basis for the fortified fermentation of red sour soup.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (N.L.); (X.L.); (Y.H.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Xiuli Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (N.L.); (X.L.); (Y.H.)
| | - Yue Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (N.L.); (X.L.); (Y.H.)
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (N.L.); (X.L.); (Y.H.)
| | - Aiming Bao
- Guizhou Nanshanpo Food Processing Co., Ltd., Anshun 561000, China; (A.B.); (W.Q.)
| | - Weijun Qin
- Guizhou Nanshanpo Food Processing Co., Ltd., Anshun 561000, China; (A.B.); (W.Q.)
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|