1
|
Zheng X, Yang J, Liu X, Sun C, Zhou Q, Wang A, Chen J, Liu B. Effects of Different Levels of Antarctic Krill Oil on the Ovarian Development of Macrobrachium rosenbergii. Animals (Basel) 2024; 14:3313. [PMID: 39595365 PMCID: PMC11591225 DOI: 10.3390/ani14223313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Antarctic krill oil has been proven to be able to promote the ovarian development of crustaceans, but its optimal application dose and potential regulatory mechanism in Macrobrachium rosenbergii are still unclear. In this study, five isonitrogenous and isolipidic diets with gradient additions of Antarctic krill oil (0%, 1.5%, 3%, 4.5%, and 6%) were served exposed to 8 weeks of feeding. The results show that 3-4.5% Antarctic krill oil supplementation significantly increases the weight gain rate and specific growth rate of M. rosenbergii (p < 0.05). In addition, 3-4.5% Antarctic krill oil supplementation significantly increased the content of hemolymph vitellogenin (VTG) and the levels of reproductive hormones, including methyl farnesoate (MF), estradiol (E2), and progesterone (P4) (p < 0.05). The differences in ovarian index, oocyte volume, yolk granule deposition in oocytes, and the transcription levels of VTG genes in hepatopancreas and ovarian tissues demonstrated that the addition of Antarctic krill oil significantly promoted ovarian development and vitellogenesis, especially at the 4.5% addition level. In terms of molecular signaling, this study confirms that the retinol metabolic signaling pathway, MF signaling pathway, steroid hormone signaling pathway, and ecdysone signaling pathway, along with their specific molecules, such as Farnesoic acid-O-methyltransferase (FAMeT), retinoid x receptor (RXR), ecdysone receptor (EcR), and estrogen-related receptor (ERR), are involved in the regulation of the ovarian development of M. rosenbergii by adding Antarctic krill oil at appropriate doses. The findings indicate that the supplementation of 4.5% Antarctic krill oil in the diet is optimal for stimulating the secretion of reproductive hormones in female M. rosenbergii, thereby promoting vitellogenesis and ovarian development.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (X.Z.); (J.Y.); (X.L.); (C.S.); (Q.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jie Yang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (X.Z.); (J.Y.); (X.L.); (C.S.); (Q.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xin Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (X.Z.); (J.Y.); (X.L.); (C.S.); (Q.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (X.Z.); (J.Y.); (X.L.); (C.S.); (Q.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (X.Z.); (J.Y.); (X.L.); (C.S.); (Q.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Aimin Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Jianming Chen
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (X.Z.); (J.Y.); (X.L.); (C.S.); (Q.Z.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
2
|
Hou L, Guo S, Wang Y, Liu S, Wang X. Neuropeptide ACP is required for fat body lipid metabolism homeostasis in locusts. INSECT SCIENCE 2024; 31:1453-1465. [PMID: 38227554 DOI: 10.1111/1744-7917.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Fat body metabolism plays crucial roles in each aspect of insect life traits. Although neuropeptides have been documented to be one of the major neuroendocrinal regulators involved in fat body metabolism, the detailed regulatory mechanism is poorly explored. Here, we conducted comparative metabolome and transcriptome analyses of fat body between wide type (WT) and adipokinetic hormone/corazonin-related peptide (ACP) loss of function mutants of the migratory locust, Locusta migratoria. We found that knockout of ACP resulted in significantly reduced fat body triacylglycerol content but enhanced abundance of phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine. Additionally, the expression levels of genes involved in triacylglycerol and phospholipid synthesis and degradation were significantly altered in the fat body of ACP mutants. Moreover, female ACP mutants displayed much higher fecundity compared to WT females. These findings highlight the important role of neuropeptide ACP in fat body lipid metabolism homeostasis in locusts.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shaoye Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Fang J, Yang C, Liao Y, Wang Q, Deng Y. Transcriptomic and metabolomic analyses reveal sex-related differences in the gonads of Pinctada fucata martensii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101304. [PMID: 39116717 DOI: 10.1016/j.cbd.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Pinctada fucata martensii is an economically important bivalve mollusk, as this species makes a major contribution to seawater pearl production. Pearl production efficiency varies between the sexes of P. f. martensii, but many aspects of the molecular mechanisms underlying sex determination and sex differentiation in P. f. martensii remain unclear. Here, transcriptomic and metabonomic analyses were conducted to identify the major genes and metabolic changes associated with sex determination and gametogenesis. We identified a total of 3426 differentially expressed genes (DEGs) between females and males. These included Fem-1c and Foxl2, which are involved in sex determination and sex differentiation, and SOHLH2, Nanos1 and TSSK4, which are involved in gametogenesis. We also identified a total of 5231 significant differential metabolites (SDMs) between females and males. These DEGs were enriched in 47 metabolic pathways, including "ABC transporters," "purine metabolism," and "glycerophospholipid metabolism." Our findings provide new insights into the molecular mechanisms underlying sex determination, sex differentiation, and gametogenesis and will aid future studies of P. f. martensii.
Collapse
Affiliation(s)
- Jiaying Fang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China
| | - Yongshan Liao
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
4
|
Lan H, Liu F, Lu L, Liu A, Ye H. A new type II CHH neuropeptide involves ovarian development in the peppermint shrimp, Lysmata vittata. PLoS One 2024; 19:e0305127. [PMID: 39088423 PMCID: PMC11293640 DOI: 10.1371/journal.pone.0305127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 08/03/2024] Open
Abstract
Type II crustacean hyperglycemic hormone (CHH) neuropeptides play diverse roles in crustaceans. In the hermaphrodite shrimp Lysmata vittata, two transcripts of type II CHHs (molt-inhibiting hormone/gonad-inhibiting hormone, MIH/GIH1 and MIH/GIH2) were identified by transcriptome sequencing, and MIH/GIH1 was later named Lvit-GIH1 for its inhibitory effect on ovarian development. Based on the high similarity of MIH/GIH2 to Lvit-GIH1, we named tentatively MIH/GIH2 as Lvit-GIH2 and explored the role of Lvit-GIH2 in ovarian development. The open reading frame (ORF) of Lvit-GIH2 was 333 bp in length, encoding a precursor consisted of a 32-aa signal peptide and a 78-aa mature peptide, which shared high sequence similarity with the type II subfamily peptides in crustaceans. Notably, Lvit-GIH2 was widely expressed in multiple tissues. The qRT-PCR findings indicated a rising trend in the expression of Lvit-GIH2 from the male phase to the euhermaphrodite phase. Both RNA interference and addition of GIH2 recombinant proteins (rGIH2) experiments showed that Lvit-GIH2 suppressed Lvit-Vg expression in hepatopancreas and Lvit-VgR expression in ovary. To further investigate the role of Lvit-GIH2 in ovarian development, the RNA-sequence analysis was performed to examine the changes in ovary after addition of rGIH2. The results showed that the pathways (Cysteine and methionine metabolism, Apoptosis-multiple species, etc.) and the genes (17bHSD8, IGFR, CHH, etc.) related to ovarian development were negatively regulated by rGIH2. In brief, Lvit-GIH2 might inhibit the ovarian development in L. vittata.
Collapse
Affiliation(s)
- Huiling Lan
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Fang Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Li Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - An Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Haihui Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
5
|
Zhang X, Yin Y, Fan H, Zhou Q, Jiao L. Arginine Promoted Ovarian Development in Pacific White Shrimp Litopenaeus vannamei via the NO-sGC-cGMP and TORC1 Signaling Pathways. Animals (Basel) 2024; 14:1986. [PMID: 38998098 PMCID: PMC11240395 DOI: 10.3390/ani14131986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to evaluate the effects of arginine (0.5%, 1%, 1.5%, 2%, and 2.5% arginine supplementation levels were selected) on the ovarian development of Pacific white shrimp (Litopenaeus vannamei). The analyzed arginine supplementation levels in each diet were 2.90%, 3.58%, 4.08%, 4.53%, 5.04%, and 5.55%, respectively. A total of 540 shrimp (an initial weight of approximately 14 g) with good vitality were randomly distributed into six treatments, each of which had three tanks (300 L in volume filled with 200 L of water), with 30 shrimp per duplicate. Shrimp were fed three times a day (6:00 a.m., 11:00 a.m., and 6:00 p.m.). The results showed that after the 12-week raring cycle, shrimp fed with 4.08% and 4.53% Arg achieved better ovary development, which was identified by ovarian stage statistics, ovarian morphology observation, serum hormone levels (methylfarneside (MF); 5-hydroxytryptamine (5-HT); estradiol (E2); and gonadotropin-releasing hormone (GnRH)), gene expression (DNA meiotic recombinase 1 (dmc1), proliferating cell nuclear antigen (pcna), drosophila steroid hormone 1 (cyp18a), retinoid X receptor (rxra), and ecdysone receptor (ecr)). Further in-depth analysis showed that 4.08% and 4.53% Arg supplementation increased the concentration of vitellogenin in hepatopancreas and serum (p < 0.05) and upregulated the expression level of hepatopancreatic vg and vgr (p < 0.05), which promoted the synthesis of hepatopancreas exogenous vitellogenin and then transported it into the ovary through the vitellogenin receptor and further promoted ovarian maturation in L. vannamei. Meanwhile, compared with the control group, the expression level of vg in the ovary of the 4.53% Arg group was significantly upregulated (p < 0.05), which indicated endogenous vitellogenin synthesis in ovarian maturation in L. vannamei. Moreover, the expression of genes related to the mechanistic target of the rapamycin complex 1 (mTORC1) pathway and protein levels was regulated by dietary arginine supplementation levels. Arginine metabolism-related products, including nitric oxide synthase (NOS), nitric oxide (NO), and cyclic guanosine monophosphate (cGMP), were also affected. RNA interference was applied here to study the molecular regulation mechanism of arginine on ovarian development in L. vannamei. A green fluorescent protein (GFP)-derived double-stranded RNA (dsGFP) is currently commonly used as a control, while TOR-derived dsRNA (dsTOR) and NOS-derived dsRNA (dsNOS) were designed to build the TOR and NOS in vivo knockdown model. The results showed that the mTORC1 and NO-sGC-cGMP pathways were inhibited, while the vitellogenin receptor and vitellogenin gene expression levels were downregulated significantly in the hepatopancreas and ovary. Overall, dietary arginine supplementation could enhance endogenous and exogenous vitellogenin synthesis to promote ovary development in L. vannamei, and the appropriate dosages were 4.08% and 4.53%. The NO-sGC-cGMP and mTORC1 signaling pathways mediated arginine in the regulation of ovary development in L. vannamei.
Collapse
Affiliation(s)
- Xin Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yanan Yin
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Haitao Fan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Chen H, Li Z, Yang H, Zhang J, Farhadi A, Li E. Identifying genes involved in the secretory physiological response to feeding in Pacific White Shrimp (Litopenaeus vannamei) using transcriptomics. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111555. [PMID: 38007175 DOI: 10.1016/j.cbpa.2023.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The physiological response to feeding is important for production aspects that include feed utilization and growth, and the responses require the action of numerous secretory factors. However, as an important aquaculture animal, the secretory response of Pacific White Shrimp (Litopenaeus vannamei) after feeding has not been comprehensively characterized. In this study, transcriptome analysis showed that 3172 differentially expressed genes were involved in the post-feeding response, including 289 new genes not annotated in the L. vannamei reference genome. Subsequently, 715 differentially expressed secretory reference genes and 18 new differentially expressed secretory genes were obtained through the identification of signal peptides in secreted proteins. Functional classification revealed that differentially expressed secretory genes were enriched in pathways pertaining to lipid metabolism (20 genes), carbohydrate metabolism (21 genes), glycan biosynthesis and metabolism (27 genes), digestive system (40 genes), and transport and metabolism (43 genes). The 14 pathways most enriched by differentially expressed secretory genes involved 83 genes, 71 of which encoded enzymes involved in food digestion and metabolism. Specific enzymes such as lipase 3-like and NPC intracellular cholesterol transporter 1-like in lipid metabolism, alpha-amylase-like and glucosylceramidase-like in carbohydrate metabolism, and cysteine proteinase 4-like and trypsin-1-like in the digestive system were found to be differentially expressed. Furthermore, we discovered a new gene, MSTRG.2504, that participates in the digestive system and carbohydrate metabolism. The study provides valuable insights into the secretory response (especially metabolism-related enzymes) to feeding in L. vannamei, uncovering the significant roles of both known and new genes. Furthermore, this study will improve our understanding of the feeding physiology of L. vannamei and provide a reference basis for further feeding endocrine research in the future.
Collapse
Affiliation(s)
- Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China
| | - Zecheng Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China
| | - Haoli Yang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China
| | - Jiangyuan Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China
| | - Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan 570228, China.
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Li Z, Zhang G, Pan K, Niu X, Shu-Chien AC, Chen T, Zhang X, Wu X. Functional transcriptome reveals hepatopancreatic lipid metabolism during the molting cycle of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111474. [PMID: 37406959 DOI: 10.1016/j.cbpa.2023.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Crustacean molting is highly related to energy and lipid metabolism. This study was conducted to detect the changes of total lipids (TL), triacylglyceride (TAG), phospholipid (PL) and lipid droplets in hepatopancreas, and then to investigate the gene expression patterns related to hepatopancreatic lipid metabolism during the molting cycle of Chinese mitten crab Eriocheir sinensis. Hepatopancreatic TL and TAG increased significantly from post-molt stage to pre-molt stage, then decreased significantly from pre-molt stage to ecdysis stage, which is consistent to the changes of neutral lipid-rich adipocytes in hepatopancreas. By transcriptomic analysis, 65,325 transcripts were sequenced and assembled, and 28,033 transcripts were annotated. Most genes were related to energy metabolism, and the enriched genes were involved in carbohydrate and lipid metabolism and biosynthesis, especially in de novo synthesis of fatty acids and TAG, and ketone body production. Compared to the inter-molt stages, acetyl-CoA carboxylase, fatty acid synthase and other genes related to the synthesis of fatty acids were upregulated in the pre-molt stage. TAG synthesis related genes, including Glycerol-3-phosphate acyltransferase and 1-acylglycerol-3-phosphate acyltransferases, were upregulated in the post-molt stage compared to the inter-molt stage. The expression of ketone body-related genes had no significant changes during the molting cycle. Compared to the TAG synthetic pathway, ketone body biosynthesis may contribute less/secondarily to fatty acid metabolic processes, which could be involved in the other physiological processes or metabolism. In conclusion, these results showed that TAG is the major lipid deposition during inter- and pre-molt stages, and the most genes are related to the fatty acids and TAG metabolism in the hepatopancreas during the molting cycle of E. sinensis.
Collapse
Affiliation(s)
- Zhi Li
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Guangbao Zhang
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Kewu Pan
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Xingjian Niu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | | | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; School of Biological Sciences, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
8
|
Xu C, Yang X, Liang Z, Jiang Z, Chen H, Han F, Jia Y, Li E. Evaluation of the Role of Soybean Lecithin, Egg Yolk Lecithin, and Krill Oil in Promoting Ovarian Development in the Female Redclaw Crayfish Cherax quadricarinatus. AQUACULTURE NUTRITION 2023; 2023:6925320. [PMID: 36860976 PMCID: PMC9973198 DOI: 10.1155/2023/6925320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
The optimal supplementation of lipid nutrients in the diet showed crucial physiological functions in gonadal development and maturation in adult female aquatic animals. Four isonitrogenous and isolipidic diets with no extra lecithin supplementation (control), 2% soybean lecithin (SL), egg yolk lecithin (EL), or krill oil (KO) supplementation were formulated for Cherax quadricarinatus (72.32 ± 3.58 g). Ovary development and physiological characteristics of crayfish were evaluated after a 10-week feeding trial. The results indicated that SL, EL, or KO supplementation all significantly increased the gonadosomatic index, especially in the KO group. Crayfish fed the diet with SL showed the highest hepatosomatic index compared with those fed the other experimental diets. KO was more efficient than SL and EL in promoting triacylglycerol and cholesterol deposition in the ovary and hepatopancreas but also showed the lowest concentration of low-density lipoprotein cholesterol in the serum. KO significantly increased yolk granule deposition and accelerated oocyte maturation than other experimental groups. Furthermore, dietary phospholipids significantly enhanced the gonad-stimulating hormone concentration in the ovary and reduced the secretion of gonad-inhibiting hormones in the eyestalk. KO supplementation also significantly improved organic antioxidant capacity. From the ovarian lipidomics results, phosphatidylcholine and phosphatidylethanolamine are two main glycerophospholipids that respond to different dietary phospholipids. Polyunsaturated fatty acids (especially C18:2n-6, C18:3n-3, C20:4n-6, C20:5n-3, and C22:6n-3) were pivotal participants during ovarian development of crayfish regardless of lipid type. Combined with the ovarian transcriptome, the best positive function of KO was due to activated steroid hormone biosynthesis, sphingolipid signaling, retinol metabolism, lipolysis, starch and sucrose metabolism, vitamin digestion and absorption, and pancreatic secretion. As a consequence, dietary supplementation with SL, EL, or KO all improved the ovarian development quality of C. quadricarinatus, especially KO, which was the optimum choice for promoting ovary development in adult female C. quadricarinatus.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xiaolong Yang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Zhenye Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Zongzheng Jiang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Freshwater Aquaculture Genetics and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
9
|
Liang X, Luo X, Lin H, Han F, Qin JG, Chen L, Xu C, Li E. Growth, Health, and Gut Microbiota of Female Pacific White Shrimp, Litopenaeus vannamei Broodstock Fed Different Phospholipid Sources. Antioxidants (Basel) 2022; 11:antiox11061143. [PMID: 35740040 PMCID: PMC9219652 DOI: 10.3390/antiox11061143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Phospholipids have an important antioxidant effect on animals. The effects of different dietary phospholipid sources on the growth, antioxidant activity, immunity, and gut microbiota of female broodstock of Pacific white shrimp Litopenaeus vannamei were investigated. Four isoproteic and isolipid semi-purified diets containing 4% soybean lecithin (SL), egg yolk lecithin (EL), or krill oil (KO) and a control diet without phospholipid supplementation were fed to female broodstock of L. vannamei (34.7 ± 4.2 g) for 28 days. The growth performance, antioxidative capacity, and innate immunity of the female broodstock fed phospholipid supplemented diets were improved regardless of sources compared with the control shrimp. The effects on growth and antioxidant capacity in female shrimp fed the KO diet were highest. The innate immunity of female shrimp fed the EL and KO diets were significantly higher than shrimp fed the SL diet. Dietary phospholipid supplementation increased gut microbiota diversity and richness, and the Chao1 and ACE values in the KO group were significantly higher than in the control group. The richness of Proteobacteria, Photobacterium, and Vibrio decreased, whereas the richness of Firmicutes and Bacteroidetes increased in the shrimp fed the KO diet compared with the shrimp fed the SL and EL diets. The interactions of gut microbiota in shrimp fed the KO diet were the most complex, and the positive interaction was the largest among all the treatments. The functional genes of gut microbiota in shrimp fed the KO diet were significantly enriched in lipid metabolism and terpenoid/polyketide metabolism pathways. Spearman correlation analysis showed that Fusibacter had significantly positive correlations with antioxidant activity (total antioxidant capacity, superoxide dismutase, glutathione peroxidase), immune enzyme activity (phenoloxidase and lysozyme), and immune gene expression (C-type lectin 3, Caspase-1). All findings suggest that dietary phospholipids supplementation can improve the growth and health status of female L. vananmei broodstock. Krill oil is more beneficial in improving the antioxidant capacity and innate immunity than other dietary phospholipid sources. Furthermore, krill oil can help establish the intestinal immune barrier by increasing the richness of Fusibacter and promote the growth of female shrimp. Fusibacter may be involved in iron metabolism to improve the antioxidant capacity of female shrimp.
Collapse
Affiliation(s)
- Xiaolong Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Xiaolong Luo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Jian G. Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia;
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
- Correspondence: (C.X.); (E.L.)
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
- Correspondence: (C.X.); (E.L.)
| |
Collapse
|
10
|
Liu M, Sun C, Zheng X, Zhou Q, Liu B, Zhou Y, Xu P, Liu B. Comparative Proteomic Analysis Revealed the Mechanism of Tea Tree Oil Targeting Lipid Metabolism and Antioxidant System to Protect Hepatopancreatic Health in Macrobrachium rosenbergii. Front Immunol 2022; 13:906435. [PMID: 35711420 PMCID: PMC9195101 DOI: 10.3389/fimmu.2022.906435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Tea tree oil (TTO) is a pure natural plant essential oil. The studies evaluated the hepatopancreas lipid metabolism and antioxidant efficacy of Macrobrachium rosenbergii fed with 0 (CT group) and 100 mg/kg TTO (TT group) by label-free quantification proteomic analysis. Compared to the CT group, the TT group improved growth performance and increased the survival rate after stress. Dietary TTO also decreased hemolymph AST and ALT activities and decreased hepatopancreatic vacuolation. At the same time, hepatopancreas lipids droplets and hemolymph lipids (TG, TC, LDL-C) were decreased, and the peroxidation products content (MDA, LPO, 4-HNE) was also decreased. In addition, the levels of hepatopancreas antioxidant enzymes (T-AOC, CAT, and SOD) were increased in the TT group. With proteomic analysis, a total of 151 differentially expressed proteins (DEPs) (99 up-regulated and 52 down-regulated) were identified in the hepatopancreas. Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction analysis showed that the 16 DEPs have interactions, which are mainly involved in the pathways related to lipid metabolism (fatty acid biosynthesis, fatty acid metabolism, glycerophospholipid metabolism) and redox reaction (cytochrome P450 enzyme systems). Furthermore, the mRNA expression of 15 proteins followed the proteomic analysis with qRT-PCR validation. Pearson correlation analysis showed that fatty acids and glycerophospholipid metabolism-related proteins were highly correlated to peroxide content, glycerophospholipid metabolism, and cytochrome P450 system-related proteins (CYP1A1, GSTT1, GPX4) were highly correlated to AST and ALT. Additionally, GPX4 is closely related to peroxide content and antioxidant enzyme activity. Our results revealed that TTO plays a protective role in the hepatopancreas targeting the critical enzymes and antioxidant reactions in lipid metabolism. Provides a new perspective to elucidate the action path of TTO in protecting invertebrate hepatopancreas, highlights the influence of lipid metabolism on hepatopancreas health and the interaction between lipid metabolism and antioxidant system in the regulation of TTO.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yifan Zhou
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Pao Xu, ; Bo Liu,
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Pao Xu, ; Bo Liu,
| |
Collapse
|