1
|
Zhang S, Chen B, Liu Y, Sun H, Zhang H, Li N, Qing Y, Elango J, Zhao D, Wu W. Ultrasound-Assisted Determination of Selenium in Organic Rice Using Deep Eutectic Solvents Coupled with Inductively Coupled Plasma Mass Spectrometry. Foods 2025; 14:384. [PMID: 39941978 PMCID: PMC11816988 DOI: 10.3390/foods14030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
As the focus on green chemistry intensifies, researchers are progressively looking to incorporate biodegradable and environmentally friendly solvents. Given the prevalent use of inorganic solvents in conventional methods for detecting selenium content, this study utilized a mixture design approach to create four deep eutectic solvents (DESs). The elements of the DESs consisted of six different compounds: guanidine hydrochloride, fructose, glycerol, citric acid, proline, and choline chloride. The synthesized deep eutectic solvents (DESs) exhibited a uniform and transparent appearance. The ideal ratios for each DES were established based on their density and viscosity measurements, leading to the formulations of DES1 (34% guanidine hydrochloride, 21% fructose, 45% water), DES2 (23% guanidine hydrochloride, 32% glycerol, 45% water), DES3 (27.5% citric acid, 27.5% proline, 45% water), and DES4 (30% choline chloride, 25% citric acid, 45% water). The characterization of the deep eutectic solvents (DESs) was performed using nuclear magnetic resonance (NMR) spectroscopy and infrared (IR) spectroscopy, which confirmed the molecular formation of each DES. Following this, the DESs were applied as extraction solvents in a process involving ultrasonic-assisted microextraction (UAE) combined with inductively coupled plasma mass spectrometry (ICP-MS) to assess the selenium levels in selenium-rich rice. The results were benchmarked against traditional microwave-assisted acid digestion (TM-AD), revealing selenium recovery rates ranging from 85.5% to 106.7%. These results indicate that UAE is an effective method for extracting selenium from selenium-rich rice, thereby establishing a solid data foundation for the environmentally friendly analysis of selenium content in rice.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Boyu Chen
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Yu Liu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Haoyu Sun
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Haixing Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Na Li
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
| | - Yang Qing
- Shanghai Knowhub Technology Co., Ltd. (Ouryao), 201-202, Block 4, Best Town, 388 Shengrong Road, Pudong New Area, Shanghai 201210, China;
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Dayun Zhao
- Bor S.Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (B.C.); (Y.L.); (H.S.); (H.Z.); (N.L.); (J.E.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
| |
Collapse
|
2
|
Tang N, Xu X, Guo Z, Meng X, Qian G, Li H. Preparation of safflower fermentation solution and study on its biological activity. Front Microbiol 2024; 15:1472992. [PMID: 39539711 PMCID: PMC11557484 DOI: 10.3389/fmicb.2024.1472992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Safflower, a traditional Chinese medicine, is rich in chemical components including flavonoids, polysaccharides, and alkaloids. It exhibits pharmacological effects such as antioxidant, anti-inflammatory, anti-tumor, and anti-thrombosis properties, making it a valuable resource in the medical field. Furthermore, due to its antioxidant and anti-inflammatory effects, safflower is increasingly being utilized in the cosmetics industry. Methods In this study, yeast was employed to ferment safflower, and the optimal fermentation conditions were established through single-factor experiments and response surface methodology. Subsequently, the antioxidant and anti-inflammatory efficacy of the safflower fermentation solution was assessed using both cellular and zebrafish models. Finally, the safety of the safflower fermentation solution was evaluated through a cosmetic eye irritation test. Results From a total of 20 yeast strains, YF-5 was identified as the dominant strain for safflower fermentation. By optimizing the fermentation conditions, it was established that the optimal parameters for YF-5 fermentation of safflower are as follows: a fermentation temperature of 36.55°C, a material-to-liquid ratio of 1:20.46, a fructose concentration of 6.20%, a fermentation duration of 72 h, and an inoculum volume of 4%. The biological activities of safflower, including its antioxidant and anti-inflammatory properties, were enhanced through yeast fermentation. In HaCaT cell and zebrafish oxidative damage assays, safflower fermentation solution inhibits the production of malondialdehyde (MDA) and increases superoxide dismutase (SOD) activity as well as total antioxidant capacity (T-AOC). In the RAW264.7 cell inflammatory damage assays, a 20% safflower fermentation solution was found to inhibit the release of TNF-α and NO in the inflammatory model, with inhibition rates of 30.94 and 28.86%, respectively. In the zebrafish inflammatory damage assays, the quantity of fluorescent neutral proteins in the 5% safflower fermentation solution was 0.7 times that observed in the dexamethasone (0.1 mg/mL) positive control group, indicating that its anti-inflammatory activity is comparable to that of dexamethasone (0.1 mg/mL). In the chicken embryo chorionic membrane experiment, it was observed that the safflower fermentation solution did not cause significant damage to the blood vessels of the chorionic allantoic membrane (CAM). This finding demonstrates that the safflower fermentation solution possesses a certain degree of safety. Discussion Safflower fermentation solution has antioxidant and anti-inflammatory bioactivities, and it has passed cosmetic safety evaluations. It can be used as a new natural cosmetic ingredient added to cosmetic products.
Collapse
Affiliation(s)
- Nan Tang
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqing Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenyu Guo
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Meng
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoqiang Qian
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - He Li
- School of Base Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Gok B, Budama-Kilinc Y, Kecel-Gunduz S. Anti-aging activity of Syn-Ake peptide by in silico approaches and in vitro tests. J Biomol Struct Dyn 2024; 42:5015-5029. [PMID: 37349941 DOI: 10.1080/07391102.2023.2223681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The increase in the aging population worldwide has led scientists to turn to research to prevent the aging process. In this context, synthetic peptides emerge as candidate molecules for developing new anti-aging products. This study aims to investigate the possible interactions of Syn-Ake, a synthetic peptide, with matrix metalloproteinases (MMPs) and Sirtuin 1 (SIRT1), which are the targets of anti-aging activities with in silico approaches, and to determine the antioxidant activity, and safety profile of the peptide by in vitro methods such as cytotoxicity (MTT) and genotoxicity (Ames) tests. The molecular docking study showed that the docking score energy of MMP receptors was in the order of MMP-13 < MMP-8 < MMP-1. Syn-Ake peptide provided the lowest and the most stable binding to the SIRT1 receptor at -9.32 kcal/mol. Binding interaction and protein-ligand stability of Syn-Ake with MMPs and SIRT1 in a dynamic system were predicted by 50 ns molecular dynamic (MD) simulation studies. The MD results showed that the Syn-Ake peptide remained stable in the active site of MMP-13 and SIRT1 receptors during 50 ns simulations. In addition, the antioxidant activity of Syn-Ake was investigated using diphenyl-2-picril-hydrazine (DPPH) method since it is crucial to remove free radicals that are effective in skin aging. The results revealed the concentration-dependent increased DPPH radical scavenging activity of the peptide. Finally, the safety of the Syn-Ake was investigated, and the safe dose of the peptide was determined. In conclusion, in silico and in vitro analyses show that the Syn-Ake peptide may hold promise in anti-aging formulations with its high efficacy and safety profile.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Yasemin Budama-Kilinc
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Faculty of Science, Department of Physics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
da Silva ACC, Ribeiro MM, de Souza da Costa N, Galiciolli MEA, Souza JV, Irioda AC, Oliveira CS. Analysis of the antimelanogenic activity of zinc and selenium in vitro. Arch Dermatol Res 2023; 315:2805-2812. [PMID: 37568064 DOI: 10.1007/s00403-023-02695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Melasma is an acquired chronic condition characterized by hyperchromic patches in photo-exposed areas. The search for new compounds for the treatment of melasma without side effects is constant. In this context, the aim of this study was to investigate the in vitro cytotoxic and antimelanogenic effects of the trace elements Zinc (Zn) and Selenium (Se). In this study, we evaluated the effects of 30 µM hydroquinone, this concentration did not alter mitochondrial function (MTT assay), but increased the percentage of necrotic cells and levels of reactive species. Furthermore, it showed no influence on tyrosinase activity and melanin content. Unlike hydroquinone, exposure for 48 h to 100 µM Zn and 1 and 5 µM Se had no significant influence on the analysis of reactive species, as well as on the percentage of necrotic cells. Still, specifically in relation to 100 µM Zn, it decreased the melanin content. Given the above, the trace elements Zn and Se did not show toxicity at the concentrations tested and Zn showed a promising effect, however, the mechanism needs to be better explored in order to contribute to new and updated research in the fight against melasma with a perspective of therapeutic use.
Collapse
Affiliation(s)
- Ana Cleia Cardoso da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Milena Mariano Ribeiro
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nayara de Souza da Costa
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Júlia Vicentin Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Cláudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Cheng K, Sun Y, Liu B, Ming J, Wang L, Xu C, Xiao Y, Zhang C, Shang L. Selenium Modification of Natural Products and Its Research Progress. Foods 2023; 12:3773. [PMID: 37893666 PMCID: PMC10606687 DOI: 10.3390/foods12203773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The selenization of natural products refers to the chemical modification method of artificially introducing selenium atoms into natural products to interact with the functional groups in the target molecule to form selenides. Nowadays, even though scientists in fields involving organic selenium compounds have achieved numerous results due to their continuous investment, few comprehensive and systematic summaries relating to their research results can be found. The present paper summarizes the selenization modification methods of several kinds of important natural products, such as polysaccharides, proteins/polypeptides, polyphenols, lipids, and cyclic compounds, as well as the basic principles or mechanisms of the selenizing methods. On this basis, this paper explored the future development trend of the research field relating to selenized natural products, and it is hoped to provide some suggestions for directional selenization modification and the application of natural active ingredients.
Collapse
Affiliation(s)
- Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yang Sun
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Bowen Liu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Jiajia Ming
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| | - Lulu Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yuanyuan Xiao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| |
Collapse
|
6
|
Wang Z, Wang Q, Zhong W, Liang F, Guo Y, Wang Y, Wang Z. Moisturizing and Antioxidant Effects of Artemisia argyi Essence Liquid in HaCaT Keratinocytes. Int J Mol Sci 2023; 24:ijms24076809. [PMID: 37047782 PMCID: PMC10095007 DOI: 10.3390/ijms24076809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023] Open
Abstract
Artemisia argyi essence liquid (AL) is an aqueous solution extracted from A. argyi using CO2 supercritical fluid extraction. There have been few investigations on the aqueous solution of A. argyi extracted via CO2 supercritical fluid extraction. This study aimed to explore the moisturizing and antioxidant effects of AL and to clarify the potential mechanism underlying those effects. Expression levels of skin moisture-related components and the H2O2-induced oxidative stress responses in human keratinocyte cells were measured via quantitative RT-qPCR, Western blot, and immunofluorescence. Our results showed that AL enhanced the expression of AQP3 and HAS2 by activating the EGFR-mediated STAT3 and MAPK signaling pathways. In addition, AL can play an antioxidant role by inhibiting the NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway, consequently increasing the expression of antioxidant enzymes (GPX1, SOD2) and decreasing the production of reactive oxygen species (ROS). This study revealed that AL could be used as a potential moisturizing and antioxidant cosmetic ingredient.
Collapse
Affiliation(s)
- Ziwen Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiaoli Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wenshen Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Feng Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuying Guo
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiping Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
7
|
Hu Y, Yan Z, He Y, Li Y, Li M, Li Y, Zhang D, Zhao Y, Ommati MM, Wang J, Huo M, Wang J. Ameliorative effects of different doses of selenium against fluoride-triggered apoptosis and oxidative stress-mediated renal injury in rats through the activation of Nrf2/HO-1/NQO1 signaling pathway. Food Chem Toxicol 2023; 174:113647. [PMID: 36736877 DOI: 10.1016/j.fct.2023.113647] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Excess fluoride (F) exposure can cause oxidative stress in the kidney. As an antioxidant, selenium (Se) can potentially protect the kidney from F-induced injury in rats. Hence, the histopathological, renal biochemical, oxidative stress, and apoptotic-related indices upon exposure to 100 mg/L sodium fluoride (NaF) and various doses of sodium selenite (Na2SeO3; 0.5, 1, and 2 mg/L) were assessed. Our results demonstrated that F-mediated renal structural damage and apoptosis elevated the content of serum creatinine (SCr), inhibited the activity of catalase (CAT) in serum, and increased the production of reactive oxygen species (ROS) in kidney and malondialdehyde (MDA) in serum. Interestingly, 1 mg/L dietary supplementation of Se tangibly mitigated these injuries. Furthermore, F could also change the gene and protein expression of the nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase1 (NQO1). Concomitantly, the different concentrations of Se notably alleviated their expression. Taken together, 1-2 mg/L Se ameliorated F-induced renal injury through oxidative stress and apoptosis-related routes. The recorded ameliorative effects might be related to the activation of the Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Yingjun Hu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Zipeng Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Yang He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Yan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Meng Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Yuanyuan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - DingLi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Mohammad Mehdi Ommati
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China
| | - Meijun Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China.
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, PR China.
| |
Collapse
|
8
|
Liu C, Wang P, Yang C, Zhao B, Sun P. Comparative assessment of Cucurbita moschata seed polypeptides toward the protection of human skin cells against oxidative stress-induced aging. Front Nutr 2023; 9:1091499. [PMID: 36687694 PMCID: PMC9845612 DOI: 10.3389/fnut.2022.1091499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Skin aging has attracted much attention among the current aging population of society. The seeds of Cucurbita moschata possess a variety of potential biological activities as a healthy diet. However, limited information is available on the skin-antiaging properties of C. moschata seed protein and its hydrolysate. Herein, we developed a novel strategy for protecting human skin cells against oxidative stress-induced aging by C. moschata seed polypeptides. C. moschata seed polypeptides (CSPs) with different molecular weight distributions were successfully prepared by controlling the protease hydrolysis time. The proportions of < 1,000 Da polypeptides of P-1, P-2, and P-3 were 0.11, 20.26, and 92.72%, respectively. P-3 contained the highest proportion of polypeptides of size < 1,000 Da, which was observed to promote human skin fibroblast (HSF) growth by MTT assay, cell cycle, and morphology. P-3 has an efficient repair effect on the H2O2-induced aging of HSF cells. To explain this phenomenon, cell lifespan, intracellular ROS level, superoxide dismutase (SOD) activity, and glutathione (GSH) content were investigated to reveal the interactions between P-3 and antiaging. With the increase in P-3 concentration, the ROS level significantly decreased, and the SOD activity and GSH content significantly increased in H2O2-induced HSF cells. These findings indicated that CSPs have the potential to inhibit skin aging, which could be advantageous in the health industry for providing personal care.
Collapse
|
9
|
Bjørklund G, Shanaida M, Lysiuk R, Antonyak H, Klishch I, Shanaida V, Peana M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022; 27:6613. [PMID: 36235150 PMCID: PMC9570904 DOI: 10.3390/molecules27196613] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 02/08/2023] Open
Abstract
Aging is characterized by an imbalance between damage inflicted by reactive oxygen species (ROS) and the antioxidative defenses of the organism. As a significant nutritional factor, the trace element selenium (Se) may remodel gradual and spontaneous physiological changes caused by oxidative stress, potentially leading to disease prevention and healthy aging. Se is involved in improving antioxidant defense, immune functions, and metabolic homeostasis. An inadequate Se status may reduce human life expectancy by accelerating the aging process or increasing vulnerability to various disorders, including immunity dysfunction, and cancer risk. This review highlights the available studies on the effective role of Se in aging mechanisms and shows the potential clinical implications related to its consumption. The main sources of organic Se and the advantages of its nanoformulations were also discussed.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Ivan Klishch
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|