1
|
Duo H, Chhabra R, Muthusamy V, Dutta S, Katral A, Sarma GR, Chand G, Mishra SJ, Zunjare RU, Hossain F. Allelic Diversity and Development of Breeder-Friendly Marker Specific to floury2 Gene Regulating the Accumulation of α-Zeins and Essential Amino Acids in Maize Kernel. Biochem Genet 2024:10.1007/s10528-024-10935-x. [PMID: 39369369 DOI: 10.1007/s10528-024-10935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Maize zeins lack essential amino acids, such as methionine, lysine, and tryptophan. The floury2 (fl2) mutation reduces zein synthesis and increases methionine and lysine content in kernels. In this study, fl2 gene (1612 bp) was sequenced in eight wild-type and two mutant inbreds and detected 218 SNPs and 18 InDels. Transversion of C to T at 343 bp position caused the substitution of alanine by valine in the fl2 mutant. A PCR-based marker (FL-SNP-CT) was developed, which distinguished the favorable mutant fl2 allele (T) from the wild-type (C) Fl2 allele. Gene-based diversity analysis using seven gene-based InDel markers grouped 48 inbred lines into three major clusters, with an average genetic dissimilarity coefficient of 0.534. The average major allele frequency, gene diversity, heterozygosity, and polymorphism information content of the InDel markers were 0.701, 0.392, 0.039, and 0.318, respectively. Haplotype analysis revealed 29 haplotypes of fl2 gene among these 48 inbreds. Amino acid substitution (Ala-Val) at the signal peptide cleavage site produced unprocessed 24-kDa mutant protein instead of 22-kDa zein found in normal genotype. Eight paralogues of fl2 detected in the study showed variation in exon lengths (616-1170 bp) and translation lengths (135-267 amino acids). Orthologue analysis among 15 accessions of Sorghum bicolor and two accessions of Saccharum spontaneum revealed a single exon in fl2 gene, ranging from 267 to 810 bp. The study elucidated the molecular basis of fl2 mutation and reported a breeder-friendly marker for molecular breeding programs. This is the first study to characterize fl2 gene in a set of subtropically adapted inbreds.
Collapse
Affiliation(s)
- Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Suman Dutta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Gulab Chand
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Subhra J Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
2
|
Duo H, Chhabra R, Muthusamy V, Mishra SJ, Gopinath I, Sharma G, Madhavan J, Neeraja CN, Zunjare RU, Hossain F. Molecular characterization, haplotype analysis and development of markers specific to dzs18 gene regulating methionine accumulation in kernels of subtropical maize. 3 Biotech 2024; 14:241. [PMID: 39315003 PMCID: PMC11416445 DOI: 10.1007/s13205-024-04088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Maize kernel protein is deficient in sulfur-containing essential amino acid such as methionine. The dzs18 gene encodes methionine-rich 18-kDa δ-zein in maize kernels. In this study, we sequenced full-length of dzs18 gene (820 bp) among 10 maize inbreds, revealing 43 SNPs and 22 InDels (average length-7.58 bp). Three InDels (4 bp at 113th, 15 bp at 463rd and 3 bp at 615th position) distinguished the wild-type (functional) from the mutant (non-functional) allele of dzs18. The 4 bp (TTAT) insertion caused a frameshift mutation, resulting in truncated DZS18 protein. The 15 bp insertion (ATG-TCT-TCG-ATG-ATA) added methionine-serine-serine-methionine-isoleucine, while the 3 bp deletion (CAA) led to loss of a glutamine residue in the mutant allele. Three gene-based PCR markers were developed for diversity analysis of dzs18 gene among 48 inbreds, which had an average methionine content of 0.136 %. (range: 0.031-0.340 %). Eight haplotypes were identified with methionine content varying from 0.066 % (Hap7) to 0.262 % (Hap3). Haplotypes with 4 bp deletion accumulated more methionine (0.174 %) than haplotypes with 4 bp insertion (0.082 %). The average methionine in 15 bp deletion and insertion haplotypes was 0.106 % and 0.150 %, respectively. The 3 bp insertion had 0.140 % methionine, while the deletion possessed 0.117 % methionine. Protein-protein association analysis predicted that DZS18 protein interacts with 19-kDa α-zein, 27- and 16-kDa γ-zeins, WAXY and O2 protein. A paralogue of dzs18 gene with 74 % sequence identity was identified. The functional markers reported here could facilitate the development of high methionine maize cultivars, which holds great significance to combat malnutrition, especially in developing countries. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04088-2.
Collapse
Affiliation(s)
- Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Subhra J. Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Ikkurti Gopinath
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Gaurav Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Jayanthi Madhavan
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
3
|
Katral A, Hossain F, Zunjare RU, Ragi S, Kasana RK, Duo H, Gopinath I, Mehta BK, Guleria SK, Thimmegowda V, Vasudev S, Kumar B, Karjagi CG, Pandey S, Neeraja CN, Yadava DK, Muthusamy V. Maize genotypes with favourable dgat1-2 and fatb alleles possess stable high kernel oil and better fatty acid health and nutritive indices. Int J Biol Macromol 2024; 278:134848. [PMID: 39168197 DOI: 10.1016/j.ijbiomac.2024.134848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Diverse uses of maize oil attracted various stakeholders, including food, feed, and bioenergy, highlighting the increased demand for sustainable production. Here, 48 diverse sub-tropical maize genotypes varying for dgat1-2 and fatb genes governing oil attributes, were evaluated in three diverse locations to assess trends of oil content, fatty acid (FA) profile, the effect of environment on oil attributes, the impact of different gene combinations and determine FA health and nutritional properties. The genotypes revealed wide variation in oil content (OC: 3.4-6.8 %) and FA compositional traits, namely palmitic (PA, 11.3-24.1 %), oleic (OA, 21.5-42.7 %), linoleic (LA, 36.6-61.7 %), and linolenic (ALA, 0.7-2.3 %) acids. Double-mutants with both favourable alleles (dd/ff) exhibited 51.6 % higher oil, 33.2 % higher OA, and 30.2 % reduced PA compared to wild-types (d+d+/f+f+) across locations. These double-mutants had lower saturated FA (12.2 %), and higher unsaturated FA (87.0 %), indicating reduced susceptibility to autooxidation, with lower atherogenicity (0.14), thrombogenicity (0.27) and peroxidisability (48.15), higher cholesterolemic index (7.16), optimum oxidability (5.27) and higher nutritive-value-index (3.35) compared to d+d+/f+f+, making them promising for significant health and nutritional benefits. Locally adapted stable novel double-mutants with high-oil and better FA properties identified here can expedite the maize breeding programs, meeting production demands and addressing long-standing challenges for breeders.
Collapse
Affiliation(s)
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Shridhar Ragi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Brijesh K Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Satish K Guleria
- CSK-Himachal Pradesh Krishi Vishvavidyalaya, Bajaura, Himachal Pradesh, India
| | | | - Sujata Vasudev
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Sushil Pandey
- ICAR-National Bureau of Plant Genetic Resource, New Delhi, India
| | | | | | | |
Collapse
|
4
|
Katral A, Hossain F, Zunjare RU, Mishra SJ, Ragi S, Kasana RK, Chhabra R, Thimmegowda V, Vasudev S, Kumar S, Bhat JS, Neeraja CN, Yadava DK, Muthusamy V. Enhancing kernel oil and tailoring fatty acid composition by genomics-assisted selection for dgat1-2 and fatb genes in multi-nutrient-rich maize: new avenue for food, feed and bioenergy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2402-2422. [PMID: 38990624 DOI: 10.1111/tpj.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Enhancing maize kernel oil is vital for improving the bioavailability of fat-soluble vitamins. Here, we combined favourable alleles of dgat1-2 and fatb into parental lines of four multi-nutrient-rich maize hybrids (APTQH1, APTQH4, APTQH5 and APTQH7) using marker-assisted selection (MAS). Parental lines possessed favourable alleles of crtRB1, lcyE, vte4 and opaque2 genes. Gene-specific markers enabled successful foreground selection in BC1F1, BC2F1 and BC2F2, while background selection using genome-wide microsatellite markers (127-132) achieved 93% recurrent parent genome recovery. Resulting inbreds exhibited significantly higher oil (6.93%) and oleic acid (OA, 40.49%) and lower palmitic acid (PA, 14.23%) compared to original inbreds with elevated provitamin A (11.77 ppm), vitamin E (16.01 ppm), lysine (0.331%) and tryptophan (0.085%). Oil content significantly increased from 4.80% in original hybrids to 6.73% in reconstituted hybrids, making them high-oil maize hybrids. These hybrids displayed 35.70% increment in oil content and 51.56% increase in OA with 36.32% reduction in PA compared to original hybrids, while maintaining higher provitamin A (two-fold), vitamin E (nine-fold), lysine (two-fold) and tryptophan (two-fold) compared to normal hybrids. Lipid health indices showed improved atherogenicity, thrombogenicity, cholesterolaemic, oxidability, peroxidizability and nutritive values in MAS-derived genotypes over original versions. Besides, the MAS-derived inbreds and hybrids exhibited comparable grain yield and phenotypic characteristics to the original versions. The maize hybrids developed in the study possessed high-yielding ability with high kernel oil and OA, low PA, better fatty acid health and nutritional properties, higher multi-vitamins and balanced amino acids, which hold immense significance to address malnutrition and rising demand for oil sustainably in a fast-track manner.
Collapse
Affiliation(s)
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Subhra J Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shridhar Ragi
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sujata Vasudev
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Santosh Kumar
- ICAR-Indian Agricultural Research Institute, Jharkhand, India
| | - Jayant S Bhat
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | |
Collapse
|
5
|
Katral A, Hossain F, Zunjare RU, Chhabra R, Vinutha T, Duo H, Kumar B, Karjagi CG, Jacob SR, Pandey S, Neeraja CN, Vasudev S, Muthusamy V. Multilocus functional characterization of indigenous and exotic inbreds for dgat1-2, fatb, ge2 and wri1a genes affecting kernel oil and fatty acid profile in maize. Gene 2024; 895:148001. [PMID: 37977314 DOI: 10.1016/j.gene.2023.148001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Demand for maize oil is progressively increasing due to its diverse industrial applications, aside from its primary role in human nutrition and animal feed. Oil content and composition are two crucial determinants of maize oil in the international market. As kernel oil in maize is a complex quantitative trait, improving this trait presents a challenge for plant breeders and biotechnologists. Here, we characterized a set of 292 diverse maize inbreds of both indigenous and exotic origin by exploiting functional polymorphism of the dgat1-2, fatb, ge2, and wri1a genes governing kernel oil in maize. Genotyping using gene-based functional markers revealed a lower frequencies of dgat1-2 (0.15) and fatb (0.12) mutant alleles and a higher frequencies of wild-type alleles (Dgat1-2: 0.85; fatB: 0.88). The favorable wri1a allele was conserved across genotypes, while its wild-type allele (WRI1a) was not detected. In contrast, none of the genotypes possessed the ge2 favorable allele. The frequency of favorable alleles of both dgat1-2 and fatb decreased to 0.03 when considered together. Furthermore, pairwise protein-protein interactions among target gene products were conducted to understand the effect of one protein on another and their responses to kernel oil through functional enrichments. Thus, the identified maize genotypes with dgat1-2, fatb, and wri1a favourable alleles, along with insights gained through the protein-protein association network, serve as prominent and unique genetic resources for high-oil maize breeding programs. This is the first comprehensive report on the functional characterization of diverse genotypes at the molecular and protein levels.
Collapse
Affiliation(s)
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - T Vinutha
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Bhupender Kumar
- ICAR-Indian Institute of Maize Research, New Delhi 110012, India
| | | | - Sherry R Jacob
- ICAR-National Bureau of Plant Genetic Resource, New Delhi 110012, India
| | - Sushil Pandey
- ICAR-National Bureau of Plant Genetic Resource, New Delhi 110012, India
| | | | - Sujata Vasudev
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
6
|
Duo H, Chhabra R, Muthusamy V, Zunjare RU, Hossain F. Assessing sequence variation, haplotype analysis and molecular characterisation of aspartate kinase2 (ask2) gene regulating methionine biosynthesis in diverse maize inbreds. Mol Genet Genomics 2024; 299:7. [PMID: 38349549 DOI: 10.1007/s00438-024-02096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Traditional maize grain is deficient in methionine, an essential amino acid required for proper growth and development in humans and poultry birds. Thus, development of high methionine maize (HMM) assumes great significance in alleviating malnutrition through sustainable and cost-effective approach. Of various genetic loci, aspartate kinase2 (ask2) gene plays a pivotal role in regulating methionine accumulation in maize. Here, we sequenced the entire ask2 gene of 5394 bp with 13 exons in five wild and five mutant maize inbreds to understand variation at nucleotide level. Sequence analysis revealed that an SNP in exon-13 caused thymine to adenine transversion giving rise to a favourable mutant allele associated with leucine to glutamine substitution in mutant ASK2 protein. Gene-based diversity analysis with 11 InDel markers grouped 48 diverse inbreds into three major clusters with an average genetic dissimilarity of 0.570 (range, 0.0-0.9). The average major allele frequency, gene diversity and PIC are 0.693, 0.408 and 0.341, respectively. A total of 45 haplotypes of the ask2 gene were identified among the maize inbreds. Evolutionary relationship analysis performed among 22 orthologues grouped them into five major clusters. The number of exons varied from 7 to 17, with length varying from 12 to 495 bp among orthologues. ASK2 protein with 565 amino acids was predicted to be in homo-dimeric state with lysine and tartaric acid as binding ligands. Amino acid kinase and ACT domains were found to be conserved in maize and orthologues. The study depicted the presence of enough genetic diversity in ask2 gene in maize, and development of HMM can be accelerated through introgression of favourable allele of ask2 into the parental lines of elite hybrids using molecular breeding.
Collapse
Affiliation(s)
- Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
7
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Maman S, Muthusamy V, Katral A, Chhabra R, Gain N, Reddappa SB, Dutta S, Solanke AU, Zunjare RU, Neeraja CN, Yadava DK, Hossain F. Low expression of lipoxygenase 3 (LOX3) enhances the retention of kernel tocopherols in maize during storage. Mol Biol Rep 2023; 50:9283-9294. [PMID: 37812350 DOI: 10.1007/s11033-023-08820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Deficiency of vitamin E results in several neurological and age-related disorders in humans. Utilization of maize mutants with favourable vte4-allele led to the development of several α-tocopherol (vitamin E) rich (16-19 µg/g) maize hybrids worldwide. However, the degradation of tocopherols during post-harvest storage substantially affects the efficacy of these genotypes. METHODS AND RESULTS We studied the role of lipoxygenase enzyme and Lipoxygenase 3 (LOX3) gene on the degradation of tocopherols at monthly intervals under traditional storage up to six months in two vte4-based contrasting-tocopherol retention maize inbreds viz. HKI323-PVE and HKI193-1-PVE. The analysis revealed significant degradation of tocopherols across storage intervals in both the inbreds. Lower retention of α-tocopherol was noticed in HKI193-1-PVE. HKI323-PVE with the higher retention of α-tocopherol showed lower lipoxygenase activity throughout the storage intervals. LOX3 gene expression was higher (~ 1.5-fold) in HKI193-1-PVE compared to HKI323-PVE across the storage intervals. Both lipoxygenase activity and LOX3 expression peaked at 120 days after storage (DAS) in both genotypes. Further, a similar trend was observed for LOX3 expression and lipoxygenase activity. The α-tocopherol exhibited a significantly negative correlation with lipoxygenase enzyme and expression of LOX3 across the storage intervals. CONCLUSIONS HKI323-PVE with high tocopherol retention, low -lipoxygenase activity, and -LOX3 gene expression can act as a potential donor in the vitamin E biofortification program. Protein-protein association network analysis also indicated the independent effect of vte4 and LOX genes. This is the first comprehensive report analyzing the expression of the LOX3 gene and deciphering its vital role in the retention of α-tocopherol in biofortified maize varieties under traditional storage.
Collapse
Affiliation(s)
- Shalma Maman
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Ashvinkumar Katral
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Chhabra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nisrita Gain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Suman Dutta
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | | | - Firoz Hossain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Katral A, Hossain F, Gopinath I, Chand G, Mehta BK, Kamboj MC, Zunjare RU, Yadava DK, Muthusamy V. Genetic dissection of embryo size and weight related traits for enhancement of kernel oil in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107668. [PMID: 37003215 DOI: 10.1016/j.plaphy.2023.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Embryo is a key determinant of kernel-oil in maize. Higher calorific value of maize kernel is attributed to increment in kernel-oil and it stores in specialised structure called embryo. Understanding the genetic behaviour of embryo size and weight related-traits is inevitable task for genetic improvement of kernel-oil. Here, the six-basic generations (P1, P2, F1, F2, BC1P1 and BC1P2) of three crosses (CRPBIO-962 × EC932601, CRPBIO-973 × CRPBIO-966 and CRPBIO-966 × CRPBIO-979) between contrasting embryo-sized maize inbreds were field evaluated at three locations to decipher the genetics of twenty embryo, kernel and embryo-to-kernel related-traits through generation-mean-analysis (GMA). Combined ANOVA revealed the significance of all the traits among generations; however, location and generation × location were found to be non-significant (P > 0.05) for most of the traits. Significance (P < 0.05) of scaling and joint-scaling tests revealed the presence of non-allelic interactions. Elucidation of six-parameters disclosed the predominance of dominance main-effect (h) and dominance × dominance interaction-effect (l) for most of traits. The signs of (h) and (l) indicated the prevalence of duplicate-epistasis type across crosses and locations. Thus, the population improvement approaches along with heterosis breeding method could be effective for improvement of these traits. Quantitative inheritance pattern was observed for all the traits with high broad-sense heritability and better-stability across locations. The study also predicted one to three major-gene blocks/QTLs for embryo-traits and up to 11 major-gene blocks/QTLs for embryo-to-kernel traits. These findings could provide deep insights to strategize extensive breeding methods to improve embryo traits for enhancing kernel-oil in sustainable manner.
Collapse
Affiliation(s)
| | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Gulab Chand
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Brijesh K Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Mehar C Kamboj
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | | | | | | |
Collapse
|
10
|
Chhabra R, Muthusamy V, Baveja A, Katral A, Mehta B, Zunjare RU, Hossain F. Allelic variation in shrunken2 gene affecting kernel sweetness in exotic-and indigenous-maize inbreds. PLoS One 2022; 17:e0274732. [PMID: 36136965 PMCID: PMC9498942 DOI: 10.1371/journal.pone.0274732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
Sweet corn has become a popular food worldwide. It possesses six-times more sugar than field corn due to the presence of recessive shrunken2 (sh2) gene. Despite availability of diverse sweet corn germplasm, comprehensive characterization of sh2 has not been undertaken so far. Here, entire Sh2 gene (7320 bp) among five field corn-(Sh2Sh2) and six sweet corn-(sh2sh2) inbreds was sequenced. A total of 686 SNPs and 372 InDels were identified, of which three SNPs differentiated the wild-(Sh2) and mutant-(sh2) allele. Ten InDel markers were developed to assess sh2 gene-based diversity among 23 sweet corn and 25 field corn lines. Twenty-five alleles and 47 haplotypes of sh2 were identified among 48 inbreds. Among markers, MGU-InDel-2, MGU-InDel-3, MGU-InDel-5 and MGU-InDel-8 had PIC>0.5. Major allele frequency varied from 0.458–0.958. The gene sequence of these maize inbreds was compared with 25 orthologues of monocots. Sh2 gene possessed 15–18 exons with 6-225bp among maize, while it was 6–21 exons with 30-441bp among orthologues. While intron length across maize genotypes varied between 67-2069bp, the same among orthologues was 57–2713 bp. Sh2-encoded AGPase domain was more conserved than NTP transferase domain. Nucleotide and protein sequences of sh2 in maize and orthologues revealed that rice orthologue was closer to maize than other monocots. The study also provided details of motifs and domains present in sh2 gene, physicochemical properties and secondary structure of SH2 protein in maize inbreds and orthologues. This study reports detailed characterization and diversity analysis in sh2 gene of maize and related orthologues in various monocots.
Collapse
Affiliation(s)
- Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aanchal Baveja
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Brijesh Mehta
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail:
| |
Collapse
|